首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  2021年   3篇
  2019年   2篇
  2016年   1篇
  2013年   2篇
  2012年   5篇
  2011年   6篇
  2010年   1篇
  2009年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
2.
3.
Cytosolic background fluorescence is often observed when native low-abundance peroxisomal proteins carrying a weak peroxisomal targeting sequence are expressed as fluorescent fusion protein using a strong constitutive promoter in transiently transformed plant cells. This cytosolic fluorescence usually comes from the strong expression of the low-abundance proteins exceeding the peroxisome import efficiency. This often results in a misinterpretation of the protein subcellular localization, as there is doubt as to whether proteins are dually targeted to the cytosol and peroxisome or are exclusively localized to peroxisomes. To circumvent this experimental difficulty, the protein peroxisome import study can be optimized by de novo protein synthesis inhibition in transiently transformed cells using the translation inhibitor cycloheximide. This approach was used here successfully for the study of the subcellular localization of distinct plant isoprenoid biosynthetic enzymes, allowing us to clearly demonstrate that 5-phosphomevalonate kinase, mevalonate 5-diphosphate decarboxylase and a short isoform of farnesyl diphosphate synthase from Catharanthus roseus are exclusively localized to peroxisomes.  相似文献   
4.
In plants, the mevalonic acid (MVA) pathway provides precursors for the formation of triterpenes, sesquiterpenes, phytosterols and primary metabolites important for cell integrity. Here, we have cloned the cDNA encoding enzymes catalysing the final three steps of the MVA pathway from Madagascar periwinkle (Catharanthus roseus), mevalonate kinase (MVK), 5-phosphomevalonate kinase (PMK) and mevalonate 5-diphosphate decarboxylase (MVD). These cDNA were shown to functionally complement MVA pathway deletion mutants in the yeast Saccharomyces cerevisiae. Transient transformations of C. roseus cells with yellow fluorescent protein (YFP)-fused constructs reveal that PMK and MVD are localised to the peroxisomes, while MVK was cytosolic. These compartmentalisation results were confirmed using the Arabidopsis thaliana MVK, PMK and MVD sequences fused to YFP. Based on these observations and the arguments raised here we conclude that the final steps of the plant MVA pathway are localised to the peroxisome.  相似文献   
5.
6.
7.
Involvement of Ca(2+) signalling in regulation of the biosynthesis of monoterpene indole alkaloids (MIA) in Catharanthus roseus has been extensively studied in recent years, albeit no protein of this signalling pathway has been isolated. Using a PCR strategy, two C. roseus cDNAs encoding distinct calmodulin (CAM) isoforms were cloned and named CAM1 and CAM2. The deduced 149 amino acid sequences possess four Ca(2+) binding domains and exhibit a close identity with Arabidopsis CAM isoforms (>91%). The ability of CAM1 and CAM2 to bind Ca(2+) was demonstrated following expression of the corresponding recombinant proteins. Furthermore, transient expression of CAM1-GFP and CAM2-GFP in C. roseus cells showed a typical nucleo-cytoplasm localisation of both CAMs, in agreement with the wide distribution of CAM target proteins. Using RNA blot analysis, we showed that CAM1 and CAM2 genes had a broad pattern of expression in C. roseus organs and are constitutively expressed during a C. roseus cell culture cycle, with a slight inhibitory effect of auxin for CAM1. Using RNA in situ hybridisation, we also detected CAM1 and CAM2 mRNA in the vascular bundle region of young seedling cotyledons. Finally, using specific inhibitors, we also showed that CAMs are required for MIA biosynthesis in C. roseus cells by acting on regulation of expression of genes encoding enzymes that catalyse early steps of MIA biosynthesis, such as 1-deoxy-d-xylulose 5-phosphate reductoisomerase and geraniol 10-hydroxylase.  相似文献   
8.
In poplar, we identified proteins homologous to yeast proteins involved in osmosensing multistep phosphorelay Sln1p‐Ypd1p‐Ssk1p. This finding led us to speculate that Populus cells could sense osmotic stress by a similar mechanism. This study focuses on first and second protagonists of this possible pathway: a histidine‐aspartate kinase (HK1), putative osmosensor and histidine phosphotransfer proteins (HPt1 to 10), potential partners of this HK. Characterization of HK1 showed its ability to homodimerize in two‐hybrid tests and to act as an osmosensor with a kinase activity in yeast, by functional complementation of sln1Δ sho1Δ strain. Moreover, in plant cells, plasma membrane localization of HK1 is shown. Further analysis on HPts allowed us to isolate seven new cDNAs, leading to a total of 10 different HPts identified in poplar. Interaction tests showed that almost all HPts can interact with HK1, but two of them exhibit stronger interactions, suggesting a preferential partnership in poplar. The importance of the phosphorylation status in these interactions has been investigated with two‐hybrid tests carried out with mutated HK1 forms. Finally, in planta co‐expression analysis of genes encoding these potential partners revealed that only three HPts are co‐expressed with HK1 in different poplar organs. This result reinforces the hypothesis of a partnership between HK1 and these three preferential HPts in planta. Taken together, these results shed some light on proteins partnerships that could be involved in the osmosensing pathway in Populus.  相似文献   
9.
10.

Background  

The first two enzymatic steps of monoterpene indole alkaloid (MIA) biosynthetic pathway are catalysed by strictosidine synthase (STR) that condensates tryptamine and secologanin to form strictosidine and by strictosidine β-D-glucosidase (SGD) that subsequently hydrolyses the glucose moiety of strictosidine. The resulting unstable aglycon is rapidly converted into a highly reactive dialdehyde, from which more than 2,000 MIAs are derived. Many studies were conducted to elucidate the biosynthesis and regulation of pharmacologically valuable MIAs such as vinblastine and vincristine in Catharanthus roseus or ajmaline in Rauvolfia serpentina. However, very few reports focused on the MIA physiological functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号