首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
  2020年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.

Background

Attempts over the last three decades to reconstruct the phylogenetic history of the Anopheles gambiae species complex have been important for developing better strategies to control malaria transmission.

Methodology

We used fingerprint genotyping data from 414 field-collected female mosquitoes at 42 microsatellite loci to infer the evolutionary relationships of four species in the A. gambiae complex, the two major malaria vectors A. gambiae sensu stricto (A. gambiae s.s.) and A. arabiensis, as well as two minor vectors, A. merus and A. melas.

Principal Findings

We identify six taxonomic units, including a clear separation of West and East Africa A. gambiae s.s. S molecular forms. We show that the phylogenetic relationships vary widely between different genomic regions, thus demonstrating the mosaic nature of the genome of these species. The two major malaria vectors are closely related and closer to A. merus than to A. melas at the genome-wide level, which is also true if only autosomes are considered. However, within the Xag inversion region of the X chromosome, the M and two S molecular forms are most similar to A. merus. Near the X centromere, outside the Xag region, the two S forms are highly dissimilar to the other taxa. Furthermore, our data suggest that the centromeric region of chromosome 3 is a strong discriminator between the major and minor malaria vectors.

Conclusions

Although further studies are needed to elucidate the basis of the phylogenetic variation among the different regions of the genome, the preponderance of sympatric admixtures among taxa strongly favor introgression of different genomic regions between species, rather than lineage sorting of ancestral polymorphism, as a possible mechanism.  相似文献   
2.
Genetic differentiation between the largely sympatric molecular forms M and S of Anopheles gambiae appears mostly limited to division 6 and part of division 5 of the X chromosome. This region is adjacent to the centromere and includes the rDNA that was used to define these forms. This localized differentiation between populations that experience gene flow strongly suggests that this region contains genes responsible for reproductive isolation. Regions adjacent to centromeres are known to experience less recombination in several species and it has recently been suggested that low recombination rates can facilitate the accumulation and maintenance of isolation genes in partially isolated populations. Therefore, we measured the recombination rate in division 5D/6 directly and estimate that it is at least 16-fold reduced across this region compared to the remainder of the X chromosome. Additionally, sequence data from four loci from field-collected mosquitoes from several West African countries show very strong differentiation between the molecular forms in division 5D/6, whereas none was observed in two loci elsewhere on the X chromosome. Furthermore, genetic variation was substantially lower in division 5D/6 compared to the two reference loci, and the inferred genealogies of the division 5D/6 genes show patterns consistent with selective sweeps. This suggests that the reduced recombination rate has increased the effect of selection on this region and that our data are consistent with the hypothesis that reduced recombination rates can play a role in the accumulation of isolation genes in the face of gene flow.  相似文献   
3.
Molecular Biology Reports - Glutathione S-transferase genes, known to be highly polymorphic, are implicated in the process of phase II metabolism of many substrates, including xenobiotics,...  相似文献   
4.
Tripet F  Dolo G  Lanzaro GC 《Genetics》2005,169(1):313-324
Malaria control projects based on the introduction and spread of transgenes into mosquito populations depend on the extent of isolation between those populations. On the basis of the distribution of paracentric inversions, Anopheles gambiae has been subdivided into five subspecific chromosomal forms. Estimating gene flow between and within these forms of An. gambiae presents a number of challenges. We compared patterns of genetic divergence (F(ST)) between sympatric populations of the Bamako and Mopti forms at five sites. We used microsatellite loci within the j inversion on chromosome 2, which is fixed in the Bamako form but absent in the Mopti form, and microsatellites on chromosome 3, a region void of inversions. Estimates of genetic diversity and F(ST)'s suggest genetic exchanges between forms for the third chromosome but little for the j inversion. These results suggest a role for the inversion in speciation. Extensive gene flow within forms among sites resulted in populations clustering according to form despite substantial gene flow between forms. These patterns underscore the low levels of current gene flow between chromosomal forms in this area of sympatry. Introducing refractoriness genes in areas of the genome void of inversions may facilitate their spread within forms but their passage between forms may prove more difficult than previously thought.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号