首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1211篇
  免费   130篇
  国内免费   1篇
  2022年   9篇
  2021年   14篇
  2020年   9篇
  2019年   6篇
  2018年   17篇
  2017年   12篇
  2016年   21篇
  2015年   27篇
  2014年   46篇
  2013年   77篇
  2012年   95篇
  2011年   74篇
  2010年   66篇
  2009年   38篇
  2008年   67篇
  2007年   69篇
  2006年   65篇
  2005年   63篇
  2004年   62篇
  2003年   53篇
  2002年   65篇
  2001年   24篇
  2000年   27篇
  1999年   22篇
  1998年   25篇
  1997年   17篇
  1996年   16篇
  1995年   17篇
  1994年   15篇
  1993年   13篇
  1992年   15篇
  1991年   16篇
  1990年   12篇
  1989年   11篇
  1988年   8篇
  1987年   13篇
  1986年   6篇
  1985年   9篇
  1984年   10篇
  1983年   11篇
  1982年   15篇
  1981年   9篇
  1980年   6篇
  1979年   8篇
  1978年   7篇
  1977年   6篇
  1975年   6篇
  1974年   6篇
  1973年   6篇
  1969年   4篇
排序方式: 共有1342条查询结果,搜索用时 15 毫秒
1.
2.
M. J. Charron  E. Read  S. R. Haut    C. A. Michels 《Genetics》1989,122(2):307-316
The MAL gene family of Saccharomyces consists of five multigene complexes (MAL1, MAL2, MAL3, MAL4, and MAL6) each of which encodes maltose permease (GENE 1), maltase (GENE 2) and the trans-acting MAL-activator (GENE 3). Four of these loci have been mapped and each is located at or near the telomere of a different chromosome. We compare the physical structure of the MAL loci and their flanking sequences. The MAL loci were shown to be both structurally and functionally homologous throughout an approximately 9.0-kb region. The orientation of the MAL loci was determined to be: CENTROMERE . . . GENE 3-GENE 1-GENE 2 . . . TELOMERE. Telomere-adjacent sequences were found flanking GENE 2 of the MAL1, MAL3 and MAL6 loci. No common repeated elements were found on the centromere-proximal side of all the MAL1, loci. These results suggest that, during the evolution of this polygenic family, the MAL loci translocated to different chromosomes via a mechanism that involved the rearrangement(s) of chromosome termini.  相似文献   
3.
Abstract In connection with the new type of forest damage, the individual disease situation of two-year-old spruce ( Picea abies ) needles was analyzed histopathologically in forest areas exposed to different levels of O3-, SO2- and NO3- pollution.
Early damage results from losses of chlorophyll in the mesophyll cells. The bleaching is more intensive towards the apex in severely damaged needles. The cytoplasm is aggregated at the cell wall and the chloroplasts show definite structural damage as well.
The mesophyll cells below the epidermis, or the cells adjacent to the vascular bundle sheath, appear to be particularly susceptible. Collapsed cells (bone cells), which increase in number with damage, can lead to tissue death in certain needle areas, (brown tips, transverse bands).
Necrotic spots are manifested as groups of dissociated cells in which hypertrophic and collapsed cells as well as abnormal proliferations can be observed.
Hypertrophy and cell collapse appear in the central cylinder in addition to severe phenol deposits.
Bone cells and chlorophyll losses can already be detected in the green needles of damaged trees, indicating latent damage, which becomes macroscopically visible only after more extensive damage.
Our results indicate that no biotic stress factors take part in the damage of the spruce needles investigated here. Anthropogenic air pollutants in addition to abiotic stress factors must be regarded as a main cause of damage.  相似文献   
4.
5.
In order for a yeast strain to ferment maltose it must contain any one of the five dominant MAL loci. Each dominant MAL locus thus far analyzed contains three genes: GENE 1, encoding maltose permease, GENE 2 encoding maltase and GENE 3 encoding a positive trans-acting regulatory protein. In addition to these dominant MAL loci, several naturally occurring, partially functional alleles of MAL1 and MAL3 have been identified. Here, we present genetic and molecular analysis of the three partially functional alleles of MAL1: the MAL1p allele which can express only the MAL activator; the MAL1 g allele which can express both a maltose permease and maltase; and the mal1(0) allele which can express only maltase. Based on our results, we propose that the MAL1p, MAL1g and mal1(0) alleles evolved from the dominant MAL1 locus by a series of rearrangements and/or deletions of this yeast telomere-associated locus as well as by other mutagenic processes of gene inactivation. One surprising finding is that the MAL1g-encoded maltose permease exhibits little sequence homology to the MAL1-encoded maltose permease though they appear to be functionally homologous.  相似文献   
6.
Summary The genes for four glycolytic enzymes ofTrypanosoma brucei have been analyzed. The proteins encoded by these genes show 38–57% identity with their counterparts in other organisms, whether pro- or eukaryotic. These data are consistent with a phylogenetic tree in which trypanosomes diverged very early from the main branch of the eukaryotic lineage. No definite conclusion can be drawn yet about the evolutionary origin of glycosomes, the microbodies of trypanosomes which contain most enzymes of the glycolytic pathway. A bias could be observed in the codon usage of the glycolytic genes and genes for other housekeeping proteins, indicating that trypanosomes may have selected a nucleotide sequence that enables efficient translation. However, the genes for variant surface glycoproteins (VSGs) do not show such a bias. This lack of preference for special codons is explained by the high evolutionary rate that could be observed for VSG genes.Presented at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986  相似文献   
7.
8.
The mechanism by which acidophilic bacteria generate and maintain their cytoplasmic pH close to neutrality was investigated. For this purpose we determined the components of proton motive force in the eubacterium Bacillus acidocaldarius and the archaebacterium Thermoplasma acidophilum. After correction for probe binding, the proton motive force of untreated cells was 190 to 240 mV between external pH 2 and 4. Anoxia diminished total proton motive force and the transmembrane pH difference by 60 to 80 mV. The protonophore 2,4-dinitrophenol abolished the total proton motive force almost completely and diminished the transmembrane pH difference by at least two units. However, even after correction for probe binding, protonophore-treated cells maintained a pH difference of approximately one unit.  相似文献   
9.
10.
Maltose fermentation in Saccharomyces spp. requires the presence of a dominant MAL locus. The MAL6 locus has been cloned and shown to encode the structural genes for maltose permease (MAL61), maltase (MAL62), and a positively acting regulatory gene (MAL63). Induction of the MAL61 and MAL62 gene products requires the presence of maltose and the MAL63 gene. Mutations within the MAL63 gene produce nonfermenting strains unable to induce the two structural gene products. Reversion of these mal63 nonfermenters to maltose fermenters nearly always leads to the constitutive expression of maltase and maltose permease, and constitutivity is always linked to MAL6. We demonstrated that for one such revertant, strain C2, constitutivity did not require the MAL63 gene, since deletion disruption of this gene did not affect the constitutive expression of the structural genes. In addition, constitutivity was trans acting. Deletion disruption of the MAL6-linked structural genes for maltase and maltose permease in this strain did not affect the constitutive expression of a second, unlinked maltase structural gene. We isolated new maltose-fermenting revertants of a nonfermenting strain which carried a deletion disruption of the MAL63 gene. All 16 revertants isolated expressed maltase constitutively. In one revertant studied in detail, strain R10, constitutive expression was demonstrated to be linked to MAL6, semidominant, trans acting, and residing outside the MAL63-MAL61-MAL62 genes. From these studies we propose the existence of a second trans-acting regulatory gene at the MAL6 locus. We call this new gene MAL64. We mapped the MAL64 gene 2.3 centimorgans to the left of MAL63. The role of the MAL64 gene product in maltose fermentation is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号