首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  国内免费   1篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2014年   3篇
  2013年   1篇
  2011年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
Phosphotyrosine interaction domain containing 1 (PID1), a recently identified gene involved in obesity-associated insulin resistance, plays an important role in fat deposition. However, its effect on porcine intramuscular preadipocyte proliferation and differentiation remains poorly understood. In this study, the plasmid pcDNA3.1(+)-pPID1 was transfected into porcine intramuscular preadipocytes with Lipofectamine 3000 reagent to over-express porcine PID1 (pPID1). Over-expression of pPID1 significantly promoted porcine intramuscular preadipocyte proliferation. Expression of pPID1 mRNA was significantly increased upon porcine intramuscular preadipocyte differentiation. Indirect fluorescent immunocytochemistry demonstrated that pPID1 protein was localized predominantly in the nucleus of porcine intramuscular preadipocyte. The mRNA levels of peroxisome proliferators-activated receptor γ, CCAAT/enhancer binding protein α and lipoprotein lipase were significantly increased by pPID1 over-expression. Over-expression of pPID1 also led to an increase in lipid accumulation which was detected by Oil Red O staining, and significantly increased the intramuscular triacylglycerol content. These results indicate that pPID1 may play a role in enhancing porcine intramuscular preadipocyte proliferation and differentiation.  相似文献   
2.
This study aimed to examine the effect of pea fiber (PF) and wheat bran fiber (WF) supplementation in rat metabolism. Rats were assigned randomly to one of three dietary groups and were given a basal diet containing 15% PF, 15% WF, or no supplemental fiber. Urine and plasma samples were analyzed by NMR-based metabolomics. PF significantly increased the plasma levels of 3-hydroxybutyrate, and myo-inositol as well as the urine levels of alanine, hydroxyphenylacetate, phenylacetyglycine, and α-ketoglutarate. However, PF significantly decreased the plasma levels of isoleucine, leucine, lactate, and pyruvate as well as the urine levels of allantoin, bile acids, and trigonelline. WF significantly increased the plasma levels of acetone, isobutyrate, lactate, myo-inositol, and lipids as well as the urine levels of alanine, lactate, dimethylglycine, N-methylniconamide, and α-ketoglutarate. However, WF significantly decreased the plasma levels of amino acids, and glucose as well as the urine levels of acetate, allantoin, citrate, creatine, hippurate, hydroxyphenylacetate, and trigonelline. Results suggest that PF and WF exposure can promote antioxidant activity and can exhibit common systemic metabolic changes, including lipid metabolism, energy metabolism, glycogenolysis and glycolysis metabolism, protein biosynthesis, and gut microbiota metabolism. PF can also decrease bile acid metabolism. These findings indicate that different fiber diet may cause differences in the biofluid profile in rats.  相似文献   
3.
Zhang  Yunhan  Chang  Yaqi  Yang  Ting  Wen  Min  Zhang  Zhengyu  Liu  Guangmang  Zhao  Hua  Chen  Xiaoling  Tian  Gang  Cai  Jingyi  Wu  Bing  Jia  Gang 《Biological trace element research》2020,195(2):569-578
Biological Trace Element Research - Dietary zinc status was recently approved to exert a powerful influence on liver health, and zinc deficiency results in hepatic injury caused by fat deposition,...  相似文献   
4.
【目的】试验旨在考察有氧条件下接种禾谷镰刀菌后玉米品质变化规律和呕吐毒素(脱氧雪腐镰刀菌烯醇Deoxynivalenol,DON;15乙酰基脱氧雪腐镰刀菌烯醇15-acetyldeoxynivalenol,15AC-DON)的积累动态变化规律。【方法】单因素试验设计,禾谷镰刀菌接种量分别为1×10~5、1×10~6、1×10~7个/g,玉米水分22%,三角瓶中培养,通氧量为1020 m~2/m~3,温度25±2°C,湿度75%±5%,时间60 d,测定不同时间点玉米培养物中的品质指标和二毒素含量。【结果】结果表明,禾谷镰刀菌接种量对为禾谷镰刀菌提供N源的粗蛋白质含量无影响(P0.05),随着培养时间的延长,提供N源的氨基酸含量呈二次曲线变化(P0.01),提供C源的粗脂肪、淀粉、粗纤维呈线性降低(P0.01)。酸价呈线性增加(P0.01),蛋白质溶解度、能量呈线性降低(P0.01),霉菌总数和毒素DON、15AC-DON呈二次曲线变化(P0.01)。禾谷镰刀菌产DON的动态规律为,0–15d毒素产量范围为0.17–0.23mg/kg,16–20d毒素产量范围为0.14–0.41mg/kg,21–60d毒素产量范围为0.06–0.15mg/kg;禾谷镰刀菌产15AC-DON的动态规律为,0–5 d毒素产量范围为1.11–5.28 mg/kg,6–15 d毒素产量范围为5.55–10.05 mg/kg,16–60 d毒素产量范围为4.68–12.06mg/kg。【结论】玉米品质随禾谷镰刀菌接种量增加和培养时间延长逐渐降低,DON和15AC-DON产量与禾谷镰刀菌接种量呈剂量依赖关系,60 d内二毒素积累存在前期、中期和后期的动态变化规律。  相似文献   
5.
The phosphotyrosine interaction domain containing 1 (PID1) gene was firstly isolated from obese subjects and involved in obesity-associated insulin resistance. In the present study, Duroc×Landrace×Yorkshire (DLY) pig PID1 cDNA was cloned. The entire open reading frame of the cloned porcine PID1 is 654 bp. The predicted protein is composed of 217 amino acids residues with a molecular mass of 24,774 Da. Over-expression of porcine PID1 significantly accelerated the proliferation of 3T3-L1 preadipocyte, but inhibited preadipocyte differentiation by decreasing the numerous fat droplets appeared and down-regulating the mRNA expression levels of peroxisome proliferators-activated receptor-γ, CCAAT/enhancer binding protein α, fat acid synthase and lipoprotein lipase. Together, these results suggest that porcine PID1 plays a role in regulating adipose development.  相似文献   
6.
7.
8.
This study investigates the effect of acute cysteamine (CS) supplementation on rat metabolism. A metabolomic strategy using high-resolution 1H-NMR spectroscopy in conjunction with principal component analysis was applied to examine rat biological responses to CS administration. Half of female Sprague–Dawley rats (2 groups of 6 rats) were each given doses of 150 mg CS/kg body weight intraperitoneally. Urine samples were collected twice daily (0–8 and 8–24 h) from the rats following CS administration. The identifiable biochemical effects associated with CS supplementation included decreased urinary concentrations of hippurate, succinate, citric acid, and 2-oxoglutarate, as well as increased urinary concentrations of dimethylamine, dimethylglycine, glycine, and taurine. These effects were predominately seen within the first 8 h after CS administration. Clear differences in succinate, citric acid, and 2-oxoglutarate were observed 8–24 h following CS. The results suggest that CS supplementation in the rats resulted in modulation of intestinal microbial metabolism and metabolic perturbation of the tricarboxylic acid cycle.  相似文献   
9.
Pancreatic lipase plays a key role in intestinal digestion of feed fat, and is often deficient in young animals such as weaning piglets. The objective of this study was to express and characterize a partial codon optimized porcine pancreatic lipase (opPPL). A 537 bp cDNA fragment encoding N-terminus amino acid residue of the mature porcine pancreatic lipase was synthesized according to the codon bias of Pichia pastoris and ligated to the full-length porcine pancreatic lipase cDNA fragment. The codon optimized PPL was cloned into the pPICZαA (Invitrogen, Beijing, China) vector. After the resultant opPPL/pPICZαΑ plasmid was transformed into P.pastoris, the over-expressed extracellular opPPL containing a His-tag to the C terminus was purified using Ni Sepharose affinity column (GE Healthcare, Piscataway, NJ, USA), and was characterized against the native enzyme (commercial PPL from porcine pancreas, Sigma). The opPPL exhibited a molecular mass of approximately 52 kDa, and showed optimal temperature (40°C), optimal pH (8.0), Km (0.041 mM), and Vmax (2.008 µmol.mg protein −1.min−1) similar to those of the commercial enzyme with p-NPP as the substrate. The recombinant enzyme was stable at 60°C, but lost 80% (P<0.05) of its activity after exposure to heat ≥60°C for 20 min. The codon optimization increased opPPL yield for ca 4 folds (146 mg.L−1 vs 36 mg.L−1) and total enzyme activity increased about 5 folds (1900 IU.L−1 vs 367 IU.L−1) compared with those native naPPL/pPICZαΑ tranformant. Comparison of gene copies and mRNA profiles between the two strains indicated the increased rePPL yields may partly be ascribed to the increased protein translational efficiency after codon optimization. In conclusion, we successfully optimized 5-terminal of porcine pancreatic lipase encoding gene and over-expressed the gene in P. pastoris as an extracellular, functional enzyme. The recombination enzyme demonstrates a potential for future use as an animal feed additive for animal improvement.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号