首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3457篇
  免费   223篇
  国内免费   201篇
  2024年   8篇
  2023年   64篇
  2022年   162篇
  2021年   268篇
  2020年   195篇
  2019年   228篇
  2018年   218篇
  2017年   147篇
  2016年   219篇
  2015年   281篇
  2014年   369篇
  2013年   361篇
  2012年   351篇
  2011年   307篇
  2010年   156篇
  2009年   123篇
  2008年   133篇
  2007年   95篇
  2006年   57篇
  2005年   43篇
  2004年   26篇
  2003年   15篇
  2002年   13篇
  2001年   5篇
  2000年   2篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1959年   2篇
排序方式: 共有3881条查询结果,搜索用时 46 毫秒
1.
The fecundity reduction with aging is referred as the reproductive aging which comes earlier than that of chronological aging. Since humans have postponed their childbearing age, to prolong the reproductive age becomes urgent agenda for reproductive biologists. In the current study, we examined the potential associations of α‐ketoglutarate (α‐KG) and reproductive aging in mammals including mice, swine, and humans. There is a clear tendency of reduced α‐KG level with aging in the follicle fluids of human. To explore the mechanisms, mice were selected as the convenient animal model. It is observed that a long term of α‐KG administration preserves the ovarian function, the quality and quantity of oocytes as well as the telomere maintaining system in mice. α‐KG suppresses ATP synthase and alterations of the energy metabolism trigger the nutritional sensors to down‐regulate mTOR pathway. These events not only benefit the general aging process but also maintain ovarian function and delay the reproductive decline. Considering the safety of the α‐KG as a naturally occurring molecule in energy metabolism, its utility in reproduction of large mammals including humans deserves further investigation.  相似文献   
2.
3.
蕃茄(LycopersicomesculentumMill)在各生长发育期酯酶同工酶谱带无明显变化,但经磁水处理后各生长发育阶段功能叶中酯酶同工酶酶谱及磷素含量与对照组相比存在显著差异,且具有酶谱负极端带数增加,正极端带数减少的趋势。总磷含量测定结果表明处理组均比对照组显著提高。这些变化在磁水处理著前后代中不存在,故认为磁水只是致使非编码顺序局部复制引起DNA分子高级结构改变或是通过活化调节基因来调控酯酶同工酶,活化磷代谢,达到促进生长和增产的效果,而并非导致可遗传变异的结果。  相似文献   
4.
Heterozygous alleles are widespread in outcrossing and clonally propagated woody plants. The variation in heterozygosity that underlies population adaptive evolution and phenotypic variation, however, remains largely unknown. Here, we describe a de novo chromosome-level genome assembly of Populus tomentosa, an economic and ecologically important native tree in northern China. By resequencing 302 natural accessions, we determined that the South subpopulation (Pop_S) encompasses the ancestral strains of P. tomentosa, while the Northwest subpopulation (Pop_NW) and Northeast subpopulation (Pop_NE) experienced different selection pressures during population evolution, resulting in significant population differentiation and a decrease in the extent of heterozygosity. Analysis of heterozygous selective sweep regions (HSSR) suggested that selection for lower heterozygosity contributed to the local adaptation of P. tomentosa by dwindling gene expression and genetic load in the Pop_NW and Pop_NE subpopulations. Genome-wide association studies (GWAS) revealed that 88 single nucleotide polymorphisms (SNPs) within 63 genes are associated with nine wood composition traits. Among them, the selection for the homozygous AA allele in PtoARF8 is associated with reductions in cellulose and hemicellulose contents by attenuating PtoARF8 expression, and the increase in lignin content is attributable to the selection for decreases in exon heterozygosity in PtoLOX3 during adaptive evolution of natural populations. This study provides novel insights into allelic variations in heterozygosity associated with adaptive evolution of P. tomentosa in response to the local environment and identifies a series of key genes for wood component traits, thereby facilitating genomic-based breeding of important traits in perennial woody plants.  相似文献   
5.
6.
Drought stress is a serious threat to the germination of plant seeds and the growth of seedlings. Melatonin has been proven to play an important role in alleviating plant stress. However, its effect on seed germination under drought conditions is still poorly understood. Therefore, we studied the effects of melatonin on rice seed germination and physiological characteristics under drought stress. Rice seeds were treated with different concentrations of melatonin (i.e., 0, 20, 100, and 500 μM) and drought stress was simulated with 5% polyethylene glycol 6000 (PEG6000). The results showed that 100 μM melatonin can effectively improve the germination potential, rate and index; the vigor index of rice seeds; and the length of the shoot and root. In addition, that treatment also increased the activity of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and reduced the content of malondialdehyde (MDA). The grey relational grade between the shoot MDA content and the melatonin seed-soaking treatment was the highest, which could be useful for evaluating the effect of melatonin on drought tolerance. Two-way analysis of variance showed that the effect of single melatonin treatment on rice seeds was more significant than that of single drought stress and interaction treatment of drought and melatonin (p < 0.05). The subordinate function results showed that 100 μM melatonin significantly improved the germination and physiological indexes of rice seeds and effectively alleviated the adverse effects of drought stress on rice seedlings. The results helped to improve the understanding of the morphological and physiological involvement of melatonin in promoting seed germination and seedling development under drought stress.  相似文献   
7.
8.
本实验以大鼠穿梭箱主动回避反应(AAR)的习得和消退为学习记忆的指标,研究了海马内生长抑素(SS)和γ-氨基丁酸(GABA)在学习记忆中的作用。结果如下:(1)经训练而建立了AAR的大鼠,其海马内SS较对照组显著增高,而海马内GABA含量却明显降低;(2)海马内注入SS的耗竭剂半胱胺(Cys,20g/L)使大鼠AAR的习得受到明显损害,AAR的消退显著加速,海马内SS明显降低,而GABA含量却显著升高;(3)海马内注入GABA(200g/L)使大鼠AAR的消退显著加速的同时,其海马内SS含量亦显著降低。由此表明,海马内SS可能有促进学习记忆的作用,而海马内GABA升高则有相反的效应;二者在海马调控学习记忆过程中具有重要作用。  相似文献   
9.
10.
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Although its pathogenesis is still unclear, increasing evidence suggests that mitochondrial dysfunction induced by environmental toxins, such as mitochondrial complex I inhibitors, plays a significant role in the disease process. The microglia in PD brains are highly activated, and inflammation is also an essential element in PD pathogenesis. However, the means by which these toxins activate microglia is still unclear. In the present study, we found that rotenone, a mitochondrial complex I inhibitor, could directly activate microglia via the nuclear factor kappa B (NF-κB) signaling pathway, thereby inducing significantly increased expression of inflammatory cytokines. We further observed that rotenone induced caspase-1 activation and mature IL-1β release, both of which are strictly dependent on p38 mitogen-activated protein kinase (MAPK). The activation of p38 is associated with the presence of reactive oxygen species (ROS) produced by rotenone. Removal of these ROS abrogated the activation of the microglia. Therefore, our data suggest that the environmental toxin rotenone can directly activate microglia through the p38 MAPK pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号