首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21968篇
  免费   1819篇
  国内免费   1893篇
  2024年   34篇
  2023年   237篇
  2022年   488篇
  2021年   923篇
  2020年   720篇
  2019年   837篇
  2018年   798篇
  2017年   646篇
  2016年   881篇
  2015年   1330篇
  2014年   1579篇
  2013年   1680篇
  2012年   2089篇
  2011年   1855篇
  2010年   1135篇
  2009年   1030篇
  2008年   1187篇
  2007年   1076篇
  2006年   994篇
  2005年   848篇
  2004年   690篇
  2003年   656篇
  2002年   519篇
  2001年   391篇
  2000年   374篇
  1999年   327篇
  1998年   230篇
  1997年   207篇
  1996年   190篇
  1995年   186篇
  1994年   175篇
  1993年   136篇
  1992年   200篇
  1991年   170篇
  1990年   111篇
  1989年   114篇
  1988年   95篇
  1987年   80篇
  1986年   68篇
  1985年   85篇
  1984年   49篇
  1983年   35篇
  1982年   30篇
  1981年   23篇
  1980年   12篇
  1979年   17篇
  1978年   16篇
  1976年   15篇
  1975年   14篇
  1970年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
C A Yu  L Q Gu  Y Z Lin  L Yu 《Biochemistry》1985,24(15):3897-3902
The effect of the alkyl side chain of the ubiquinone molecule on the electron-transfer activity of ubiquinone in mitochondrial succinate-cytochrome c reductase is studied by using synthetic ubiquinone derivatives that possess the basic ubiquinone structure of 2,3-dimethoxy-5-methyl-1,4-benzoquinone with different alkyl side chains at the 6-position. The alkyl side chains vary in chain length, degree of saturation, and location of double bonds. When a ubiquinone derivative is used as an electron acceptor for succinate-ubiquinone reductase, an alkyl side chain of six carbons is needed to obtain the maximum activity. However, when it serves as an electron donor for ubiquinol-cytochrome c reductase or as a mediator in succinate-cytochrome c reductase, an alkyl side chain of 10 carbons gives maximal efficiency. Introduction of one or two isolated double bonds into the alkyl side chain of the ubiquinone molecule has little effect on electron-transfer activity. However, a conjugated double bond system in the alkyl side chain drastically reduces electron-transfer efficiency. The effect of the conjugated double bond system on the electron-transferring efficiency of ubiquinone depends on its location in the alkyl side chain. When location is far from the benzoquinone ring, the effect is minimal. These observations together with the results obtained from photoaffinity-labeling studies lead us to conclude that flexibility in the portion of the alkyl side chain immediately adjacent to the benzoquinone ring is required for the electron-transfer activity of ubiquinone.  相似文献   
2.
3.
4.
5.
Diabetic nephropathy (DN) as a global health concern is closely related to inflammation and oxidation. Isoliquiritigenin (ISL), a natural flavonoid compound, has been demonstrated to inhibit inflammation in macrophages. Herein, we investigated the effect of ISL in protecting against the injury in STZ-induced type 1 DN and in high glucose-induced NRK-52E cells. In this study, it was revealed that the administration of ISL not only ameliorated renal fibrosis and apoptosis, but also induced the deterioration of renal function in diabetic mice. Mediated by MAPKs and Nrf-2 signaling pathways, respectively, upstream inflammatory response and oxidative stress were neutralized by ISL in vitro and in vivo. Moreover, as further revealed by the results of molecular docking, sirtuin 1 (SIRT1) binds to ISL directly, and the involvement of SIRT1 in ISL-mediated renoprotective effects was confirmed by studies using in vitro models of SIRT1 overexpression and knockdown. In summary, by reducing inflammation and oxidative stress, ISL has a significant pharmacological effect on the deterioration of DN. The benefits of ISL are associated with the direct binding to SIRT1, the inhibition of MAPK activation, and the induction of Nrf-2 signaling, suggesting the potential of ISL for DN treatment.Subject terms: Pharmacology, Molecular biology  相似文献   
6.
A tip-focused Ca^2+ gradient is tightly coupled to polarized pollen tube growth, and tip-localized influxes of extracellular Ca^2+ are required for this process. However the molecular identity and regulation of the potential Ca^2+ channels remains elusive. The present study has implicated CNGC18 (cyclic nucleotide-gated channel 18) in polarized pollen tube growth, because its overexpression induced wider and shorter pollen tubes. Moreover, CNGC18 overexpression induced depolarization of pollen tube growth was suppressed by lower extracellular calcium ([Ca^2+]ex). CNGC18-yellow fluorescence protein (YFP) was preferentially localized to the apparent post-Golgi vesicles and the plasma membrane (PM) in the apex of pollen tubes. The PM localization was affected by tip-localized ROP1 signaling. Expression of wild type ROP1 or an active form of ROP1 enhanced CNGC18-YFP localization to the apical region of the PM, whereas expression of RopGAP1 (a ROP1 deactivator) blocked the PM localization. These results support a role for PM-Iocalized CNGC18 in the regulation of polarized pollen tube growth through its potential function in the modulation of calcium influxes.  相似文献   
7.
8.
9.
Abstract. Objectives: The ADAMs (a disintegrin and metalloproteinase) enzymes compose a family of membrane‐bound proteins characterized by their multi‐domain structure and ADAM‐12 expression is elevated in human non‐small cell lung cancers. The aim of this study was to investigate the roles played by ADAM‐12 in critical steps of bronchial cell transformation during carcinogenesis. Materials and methods: To assess the role of ADAM‐12 in tumorigenicity, BEAS‐2B cells were transfected with a plasmid encoding human full‐length ADAM‐12 cDNA, and then the effects of ADAM‐12 overexpression on cell behaviour were explored. Treatment of clones with heparin‐binding epidermal growth factor (EGF)‐like growth factor (HB‐EGF) neutralizing antibodies as well as an EGFR inhibitor allowed the dissection of mechanisms regulating cell proliferation and apoptosis. Results: Overexpression of ADAM‐12 in BEAS‐2B cells promoted cell proliferation. ADAM‐12 overexpressing clones produced higher quantities of HB‐EGF in their culture medium which may rely on membrane‐bound HB‐EGF shedding by ADAM‐12. Targeting HB‐EGF activity with a neutralizing antibody abrogated enhanced cell proliferation in the ADAM‐12 overexpressing clones. In sharp contrast, targeting of amphiregulin, EGF or transforming growth factor‐α failed to influence cell proliferation; moreover, ADAM‐12 transfectants were resistant to etoposide‐induced apoptosis and the use of a neutralizing antibody against HB‐EGF activity restored rates of apoptosis to be similar to controls.Conclusions: ADAM‐12 contributes to enhancing HB‐EGF shedding from plasma membranes leading to increased cell proliferation and reduced apoptosis in this bronchial epithelial cell line.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号