首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   1篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2005年   1篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1991年   1篇
  1985年   1篇
  1979年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
2.
Peroxynitrite was found to induce the release of K+ via the Na+/Cl- cotransport system, as do other oxidants. Since peroxynitrite is formed in vivo, its presence could contribute to a pathological dehydration of red blood cells.  相似文献   
3.
Galleria mellonella juvenile hormone binding protein (JHBP) is a single chain glycoprotein with two disulfide bonds and a molecular mass of 25,880 Da. This report describes the expression of JHBP in bacteria and yeast cells (Pichia pastoris). The expression in bacteria was low and the protein was rapidly degraded upon cell lysis. The expression of His8-tagged rJHBP (His8-rJHBP) in P. pastoris was high and the non-degraded protein was purified to homogeneity with high yield in a one-step immobilized Ni++ affinity chromatography. His8-rJHBP from P. pastoris contains one JH III binding site with KD of 3.7 +/- 1.3x10(-7) M. The results suggest that P. pastoris is the preferred system for expression of His8-rJHBP in non-degraded fully active form.  相似文献   
4.
5.
6.
Hemoglobin can nitrate itself and other proteins.   总被引:4,自引:0,他引:4  
Incubation of human hemoglobin with nitrite and hydrogen peroxide was found to induce autonitration and nitration of another protein (bovine serum albumin), as demonstrated by detection of nitrotyrosine residues in Western blots of separated membrane proteins. Inhibition of nitration by conversion of hemoglobin into the cyanmet form demonstrates that nitration is due to the pseudoperoxidase activity of hemoglobin. Incubation of whole erythrocytes with nitrite and hydrogen peroxide induces nitration of erythrocyte membrane proteins, much stronger when cellular catalase was inhibited with azide. These results suggest that hemoglobin and other hemoproteins may contribute to the tyrosine nitration in vivo.  相似文献   
7.
8.
The aim of the study was to verify if there is any association between exposure to Cu, Zn, Cd, Pb, As and the formation of malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), advanced oxidation protein products (AOPP), and whether in this process cigarette smoking plays a role. The investigations were performed in the 352 smelters occupationally exposed to heavy metals and 73 persons of control group. Metals concentration was determined by atomic absorption spectrometry. MDA and AOPP concentrations were determined by spectrophotometric methods. The concentration of 8-OHdG was determined by ELISA method. It was demonstrated an increased Cu concentration in smoking smelters compared to non-smoking control group. It was noted no differences in Zn and Mg concentrations between the examined groups. Pb concentration was more than sixfold higher in the group of smoking smelters and about fivefold higher in the group of non-smoking smelters compared to the control groups (smokers and non-smokers). It was shown that Cd concentration in the blood was nearly fivefold higher in the smoking control group compared to the non-smoking control group and more than threefold higher in the group of smoking smelters compared to non-smoking. It was shown an increased As concentration (more than fourfold) and decreased Ca concentration in both groups of smelters compared to control groups. In groups of smelters (smokers and non-smokers), twofold higher MDA and AOPP concentrations, and AOPP/albumin index compared to control groups (smokers and non-smokers) were shown. Tobacco smoke is the major source of Cd in the blood of smelters. Occupational exposure causes accumulation of Pb in the blood. Occupational exposure to heavy metals causes raise of MDA concentration and causes greater increase in AOPP concentration than tobacco smoke.  相似文献   
9.
10.
Systemic acquired acclimation (SAA) is an important light acclimatory mechanism that depends on the global adjustments of non-photochemical quenching and chloroplast retrograde signaling. As the exact regulation of these processes is not known, we measured time-resolved fluorescence of chlorophyll a in Arabidopsis thaliana leaves exposed to excess light, in leaves undergoing SAA, and in leaves after excess light episode. We compare the behavior induced in wild-type plants with null mutant of non-photochemical quenching (npq4–1). The wild type rosettes exhibit a small reduction of fluorescence decay times in leaves directly exposed to excess light and in leaves undergoing SAA in ambient low light. However in npq4–1 exposition to excess light results in much faster fluorescence decay, which is insensitive to excitation power. At the same time npq4–1 leaves undergoing SAA displayed intermediate fluorescence decay. The npq4–1 plants also lost the ability to optimize florescence decay, and thus chlorophyll a dynamics up to 2 h after excess light episode. The fluorescence decay dynamics in both WT and npq4–1 can be described by a set of 3 maximum decay times. Based on the results, we concluded that functional PsbS is required for optimization of absorbed photon fate and optimal light acclimatory responses such as SAA or after excess light stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号