首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  2019年   1篇
  2017年   2篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1978年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
This cross-sectional study investigates the relationship between parity, bone mineral density, and spontaneous osteopenia/osteoporosis in a large skeletal population of female rhesus macaques (Macaca mulatta) from the free-ranging colony of Cayo Santiago, Puerto Rico. The sample consists of 119 mature female monkeys aged 4.0-22.2 years at time of death. The data consist of measurements of bone mineral content (BMC) and bone mineral density (BMD), obtained from dual-energy X-ray absorptiometry (DEXA) of the last lumbar vertebra. After controlling for age, there is a significant increase in BMD of the spine with increasing parity (P = 0.0006), up to a parity of 7 offspring. Thus, high parity initially has a positive effect on BMD in female rhesus monkeys, but this positive effect disappears with parities that are greater than 7 offspring. After controlling for parity, however, age has a negative (P = 0.015) effect on BMD, beginning several years after the attainment of peak BMD (age 9.5 years). Thus, it appears that parity initially mitigates the effects of aging, but the positive effect of parity on BMD is eventually overwhelmed by the aging process. Mean BMC and BMD values are higher in parous females compared to nulliparous females in the same age range. Similarly, females with low parity have significantly lower mean BMD values than do age-matched high-parity controls, and the frequency of osteopenia and osteoporosis is greater in low-parity females. Forty-three percent (43%) of the osteopenic/osteoporotic females in the sample are members of the low-parity group, even though it composes only 13% (16/119) of the entire sample. This study demonstrates that the free-ranging female rhesus monkeys from Cayo Santiago are a good nonhuman primate model for the study of bone mineral density, parity, osteopenia, and osteoporosis.  相似文献   
2.
Vanadium and diabetes   总被引:21,自引:0,他引:21  
We demonstrated in 1985 that vanadium administered in the drinking water to streptozotocin (STZ) diabetic rats restored elevated blood glucose to normal. Subsequent studies have shown that vanadyl sulfate can lower elevated blood glucose, cholesterol and triglycerides in a variety of diabetic models including the STZ diabetic rat, the Zucker fatty rat and the Zucker diabetic fatty rat. Long-term studies of up to one year did not show toxicity in control or STZ rats administered vanadyl sulfate in doses that lowered elevated blood glucose. In the BB diabetic rat, a model of insulin-dependent diabetes, vanadyl sulfate lowered the insulin requirement by up to 75%. Vanadyl sulfate is effective orally when administered by either single dose or chronic doses. It is also effective by the intraperitoneal route. We have also been able to demonstrate marked long-terrn effects of vanadyl sulfate in diabetic animals following treatment and withdrawal of vanadyl sulfate. Because vanadyl sulfate is not well absorbed we have synthesized and tested a number of organic vanaditun compounds. One of these, bismaltolato-oxovanadiurn IV (BMOV), has shown promise as a therapeutic agent. BMOV is 2-3x more potent than vanadyl sulfate and has shown less toxicity. Recent studies from our laboratory have shown that the effects of vanadium are not due to a decrease in food intake and that while vanadium is deposited in bone it does not appear to affect bone strength or architecture. The mechanism of action of vanadium is currently under investigation. Several studies indicate that vanadiun is a phosphatase inhibitor and that vanadium can activate serine/threonine kineses distal to tbe insulin receptor presumably by preventing dephosphorylation due to inhibition of phosphatases Short-term clinical trials using inorganic vanadium compounds in diabetic patients have been promising.  相似文献   
3.
The mineral phase of bone is a reservoir for some biologically important ions and is the place where some toxic elements are also stored. For these reasons it is important to measure accurately and nondestructively the chemical content of bone, with respect to its main elements (Ca, P, Mg, Na) and its trace elements. We have analyzed different types of human bone by instrumental neutron activation analysis (INAA), using a SLOWPOKE reactor. We have compared our results with inductively coupled plasma emission spectroscopy (ICPES), and we have determined the limits of detection and sensitivity for the various elements, especially some biologically or toxicologically significant trace elements. Finally, we have given two examples of the use of INAA in following the penetration of an element (F) with time into bone and in characterizing nondestructively the mineral content of bone biopsies of a rare pathological condition (osteopetrosis).  相似文献   
4.
Crystal growth in native collagen gels has been used to determine the role of extracellular matrix macromolecules in biological calcification phenomena. In this system, type I collagen gels containing sodium phosphate and buffered at pH 7.4 are overlayed with a solution containing CaCl2. Crystals form in the collagen gel adjacent to the gel-solution interface. Conditions were determined which permit the growth of crystals of hydroxyapatite [Ca10(PO4)6(OH)2]. At a Ca/P molar ratio of 2:1, the minimum concentrations of calcium and phosphate necessary for precipitation of hydroxyapatite are 10 mM and 5 mM, respectively. Under these conditions, precipitation is initiated at 18-24h, and is maximal between 24h and 6 days. Addition of high concentrations of chondroitin 4-sulphate inhibits the formation of hydroxyapatite in collagen gels; initiation of precipitation is delayed, and the final (equilibrium) amount of precipitation is decreased. Inhibition of hydroxyapatite formation requires concentrations of chondroitin sulphate higher than those required to inhibit calcium pyrophosphate crystal formation.  相似文献   
5.
This study investigates the age‐ and sex‐related patterns in vertebral bone mineral density (BMD) and the relationship between BMD and vertebral osteophytosis (VO), using a specialized peripheral densitometer in a skeletal sample excavated from the British medieval village Wharram Percy. A total of 58 individuals were divided by sex into three broad age categories (18–29, 30–49, 50+ years.). Each fourth intact vertebral centra was scored for VO and 5‐mm thick coronal sections scanned in a specialized peripheral densitometer (GE Lunar Piximus DXA). Changes in BMD associated with age, sex, and VO severity were examined in the whole vertebral section, a strictly trabecular region, and a primarily cortical region of bone separately. Significant change in vertebral BMD was found to occur by middle age with little or no statistical change in BMD between middle and old age. Females appear to suffer greater bone loss at an earlier age with no change in BMD between middle and old age, whereas males show a more steady loss of BMD across the age groups. The bone mineral content and BMD of the cortical region is higher in individuals with pronounced/severe osteophytosis. The unusual age‐ and sex‐related patterns of change in vertebral BMD at Wharram Percy are compared with the patterns of age‐related change from recent longitudinal population‐based studies. The results emphasize the different pattern of bone loss in young adulthood seen in trabecular regions of the skeleton and highlight the importance of consideration of degenerative joint disease in BMD studies. The influence of lifestyle factors on vertebral BMD in this medieval population is also discussed. Am J Phys Anthropol 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
6.
Using analyses of iliac crest cell and tissue, back-scattered electron imaging, and biochemical techniques, we characterized the effects of a 14-day spaceflight (Bion 11) on bone structure and bone formation in two 3- to 4-yr-old male rhesus monkeys compared with eight age-matched Earth-control monkeys. We found that postflight bone volume was 35% lower than preflight values in flight monkeys. This was associated with reduced osteoid (-40%) and mineralizing (-32%) surfaces and decreased bone formation rate (-53%). Moreover, flight monkeys exhibited trends to lower values of mineralization profile in iliac bone (back-scattered electron imaging) and to decreased osteocalcin serum levels (P = 0.08). The initial number of trabecular bone cells yielded in cultures did not differ in flight and control animals before or after the flight. However, osteoblastic cell proliferation was markedly lower in postflight vs. preflight at 9 and 14 days of culture in one flight monkey. This study suggests that a 14-day spaceflight reduces iliac bone formation, osteoblastic activity, and/or recruitment in young rhesus monkeys, resulting in decreased trabecular bone volume.  相似文献   
7.
Susceptibility to osteoporotic fracture is influenced by genetic factors that can be dissected by whole-genome linkage analysis in experimental animal crosses. The aim of this study was to characterize quantitative trait loci (QTLs) for biomechanical and two-dimensional dual-energy X-ray absorptiometry (DXA) phenotypes in reciprocal F2 crosses between diabetic GK and normo-glycemic F344 rat strains and to identify possible co-localization with previously reported QTLs for bone size and structure. The biomechanical measurements of rat tibia included ultimate force, stiffness and work to failure while DXA was used to characterize tibial area, bone mineral content (BMC) and areal bone mineral density (aBMD). F2 progeny (108 males, 98 females) were genotyped with 192 genome-wide markers followed by sex- and reciprocal cross-separated whole-genome QTL analyses. Significant QTLs were identified on chromosome 8 (tibial area; logarithm of odds (LOD) = 4.7 and BMC; LOD = 4.1) in males and on chromosome 1 (stiffness; LOD = 5.5) in females. No QTLs showed significant sex-specific interactions. In contrast, significant cross-specific interactions were identified on chromosome 2 (aBMD; LOD = 4.7) and chromosome 6 (BMC; LOD = 4.8) for males carrying F344mtDNA, and on chromosome 15 (ultimate force; LOD = 3.9) for males carrying GKmtDNA, confirming the effect of reciprocal cross on osteoporosis-related phenotypes. By combining identified QTLs for biomechanical-, size- and qualitative phenotypes (pQCT and 3D CT) from the same population, overlapping regions were detected on chromosomes 1, 3, 4, 6, 8 and 10. These are strong candidate regions in the search for genetic risk factors for osteoporosis.  相似文献   
8.
Reconstruction of large skeletal defects is a significant and challenging issue. Bone allografts are often used for such reconstructions. However, sterilizing bone allografts by using γ-irradiation, damages collagen and causes the bone to become weak, brittle and less fatigue resistant. In a previous study, we successfully protected the mechanical properties of human cortical bone by conducting a pre-treatment with ribose, a natural and biocompatible agent. This study focuses on examining possible mechanisms by which ribose might protect the bone. We examined the mechanical properties, crosslinking, connectivity and free radical scavenging potentials of the ribose treatment. Human cortical bone beams were treated with varying concentration of ribose (0.06–1.2 M) and γ-irradiation before testing them in 3-point bending. The connectivity and amounts of crosslinking were determined with Hydrothermal-Isometric-Tension testing and High-Performance-Liquid-Chromatography, respectively. The free radical content was measured using Electron Paramagnetic Resonance. Ribose pre-treatment improved the mechanical properties of irradiation sterilized human bone in a pre-treatment concentration-dependent manner. The 1.2 M pre-treatment provided >100% of ultimate strength of normal controls and protected 76% of the work-to-fracture (toughness) lost in the irradiated controls. Similarly, the ribose pre-treatment improved the thermo-mechanical properties of irradiation-sterilized human bone collagen in a concentration-dependent manner. Greater free radical content and pentosidine content were modified in the ribose treated bone. This study shows that the mechanical properties of irradiation-sterilized cortical bone allografts can be protected by incubating the bone in a ribose solution prior to irradiation.  相似文献   
9.
Osteoporosis has become a growing health concern in developed countries and an extensive area of research in skeletal biology. Despite numerous paleopathological studies of bone mass, few studies have measured bone quality in past populations. In order to examine age- and sex-related changes in one aspect of bone quality in the past, a study was made of trabecular bone architecture in a British medieval skeletal sample. X-ray images of 5-mm-thick coronal lumbar vertebral bone sections were taken from a total of 54 adult individuals divided into three age categories (18-29, 30-49, and 50+ years), and examined using image analysis to evaluate parameters related to trabecular bone structure and connectivity. Significant age-related changes in trabecular bone structure (trabecular bone volume (BV/TV), trabecular number (Tb.N), trabecular separation (Tb.Sp), and anisotropic ratio (Tb.An)) were observed to occur primarily by middle age with significant differences between the youngest and two older age groups. Neither sex showed continuing change in trabecular structure between the middle and old age groups. Age-related changes in bone connectivity (number of nodes (N.Nd) and node-to-node strut length (Nd.Nd)) similarly indicated a change in bone connectivity only between the youngest and two older age groups. However, females showed no statistical differences among the age groups in bone connectivity. These patterns of trabecular bone loss and fragility contrast with those generally found in modern populations that typically report continuing loss of bone structure and connectivity between middle and old age, and suggest greater loss in females. The patterns of bone loss in the archaeological samples must be interpreted cautiously. We speculate that while nutritional factors may have initiated some bone loss in both sexes, physical activity could have conserved bone architecture in old age in both sexes, and reproductive factors such as high parity and extended periods of lactation could have played a key role in female bone maintenance in this historic population. The study of qualitative elements (such as trabecular architecture) is vital if we are to understand bone maintenance and fragility in the past.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号