首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
A method of multiplex polymerase chain reaction (PCR) followed by hybridization on a hydrogel oligonucleotide biochip was developed for simultaneous identification of ten different transgenic elements of plant DNA in food and feed products. The biochip contained 22 immobilized oligonucleotide probes that were intended for (1) detection of plant DNA, (2) determination of plant species (soybean, maize, potato, and rice), and (3) identification of transgenic elements, including sequences of 35S CaMV, 35S FMV, rice actin gene promoters, nos, 35S CaMV, ocs, pea rbcS1 gene terminators, and bar, gus, and nptII marker genes. The limit of detection was 0.5% for genetically modified (GM) soybean and maize in the analyzed samples. The tests on food and feed products using the developed approach and real-time PCR showed full agreement in determination of transgenic DNA in the samples. The proposed assay can be used for selection of GM samples by screening food and feed products for subsequent quantitative determination of GM component based on the identified transgene.  相似文献   
2.
The efficiency of discrimination between perfect and mismatched duplexes during hybridization on microchips depends on the concentrations of target DNA in solution and immobilized probes, buffer composition, and temperature of hybridization and is determined by both thermodynamic relationships and hybridization kinetics. In this work, optimal conditions of discrimination were studied using hybridization of fluorescently labeled target DNA with custom-made gel-based oligonucleotide microchips. The higher the concentration of immobilized probes and the higher the association constant, the higher the concentration of the formed duplexes and the stronger the corresponding fluorescence signal, but, simultaneously, the longer the time needed to reach equilibrium. Since mismatched duplexes hybridize faster than their perfect counterparts, perfect-to-mismatch signal ratio is lower in transient regime, and short hybridization times may hamper the detection of mutations. The saturation time can be shortened by decreasing the probe concentration or augmenting the gel porosity. This improves the detection of mutations in transient regime. It is shown that the decrease in the initial concentration of oligonucleotide probes by an order of magnitude causes only 1.5-2.5-fold decrease of fluorescence signals after hybridization of perfect duplexes for 3-12 h. At the same time, these conditions improve the discrimination between perfect and mismatched duplexes more than two-fold. A similar improvement may be obtained using an optimized dissociation procedure.  相似文献   
3.
To find single-nucleotide polymorphisms (SNPs) in the human genome, three modern technologies of molecular genetic analysis were combined: the ligase detection reaction (LDR), rolling circle amplification (RCA), and immobilized microarray of gel elements (IMAGE). SNPs were detected in target DNA by selective ligation of allele-specific nucleotides in microarrays. The ligation product was assayed in microarray gel pads by RCA. Two variants of microarray analysis were compared. One included selective ligation of short oligonu-cleotides immobilized in a microarray with subsequent amplification with a preformed circular probe (a common circle). The probe was especially designed for human genome research. The other variant employed immobilized allele-specific padlock probes, which could be circularized as a result of selective ligation. Codon 72 SNP of the human p53 gene was used as a model. RCA in microarrays proved to be a quantitative assay and, in combination with LDR, allowed efficient discrimination of alleles. The principles and prospects of LDR/RCA in microarrays are discussed.Translated from Molekulyarnaya Biologiya, Vol. 39, No. 1, 2005, pp. 30–39.Original Russian Text Copyright © 2005 by Kashkin, Strizhkov, Gryadunov, Surzhikov, Grechishnikova, Kreindlin, Chupeeva, Evseev, Turygin, Mirzabekov.  相似文献   
4.
Steady growth in the degree of antimicrobial resistance in Neisseria gonorrhoeae calls for the control of the spreading of resistance mutations. Here we present the data describing drug resistance mutations, the results of antimicrobial susceptibility tests, and molecular genotypes of 128 recent N. gonorrhoeae isolates collected across 9 regions of the Russian Federation. The mutations in chromosome genes penA, ponA, rpsJ, gyrA, parC, which determine the susceptibility of N. gonorrhoeae to penicillins, tetracyclines, and fluoroquinolones were detected by multiplex amplification followed by hybridization on a hydrogel microarray. The most frequent mutation was an insertion of an aspartate at position 345 of penA gene (76.6%), whereas mutations Leu421Pro in ponA gene, Val57Met in rpsJ gene, Ser91Phe in gyrA gene, Asp95Gly in gyrA gene, and Ser87Arg in parC gene were detected in 32.8–36.7% of strains. One third of studied N. gonorrhoeae isolates harbored multiple drug resistance mutations in bacterial chromosome, resulting in the bimodal distribution of mutation profiles and related patterns of antimicrobial susceptibility. The spread of multiple resistance could be explained by the vertical transfer of the mutations resulting in the clonality of the N. gonorrhoeae population.  相似文献   
5.
6.
DNA microarrays in the clinic: infectious diseases   总被引:1,自引:0,他引:1  
We argue that the most-promising area of clinical application of microarrays in the foreseeable future is the diagnostics and monitoring of infectious diseases. Microarrays for the detection and characterization of human pathogens have already found their way into clinical practice in some countries. After discussing the persistent, yet often underestimated, importance of infectious diseases for public health, we consider the technologies that are best suited for the detection and clinical investigation of pathogens. Clinical application of microarray technologies for the detection of mycobacteria, Bacillus anthracis, HIV, hepatitis and influenza viruses, and other major pathogens, as well as the analysis of their drug-resistance patterns, illustrate our main thesis.  相似文献   
7.
The review describes the history of formation and development of the microchip technology and its role in the human genome project in Russia. The main accent was done on the three-dimensional gel-based microchips developed at the Center of Biological Microchips headed by A.D. Mirzabekov since 1988. The gel-based chips of the last generation, IMAGE chips (Immobilized Micro Array of Gel Elements), have a number of advantages over the previous models. The microchips are manufactured by photoinitiated copolymerization of gel components and immobilized molecules (DNA, proteins, and ligands). This ensures an even distribution of the immobilized probe throughout the microchip gel element with a high yield (about 50% for oligonucleotides). The use of methacrylamide as a main component of the polymerization mixture resulted in a substantial increase of gel porosity without affecting its mechanical properties and stability; this allowed one to work with the DNA fragments of up to 500 nt in length, as well as with quite large protein molecules. At present, the gel-based microchips are widely applied to solve different problems. The generic microchips containing a complete set of possible hexanucleotides are used to reveal the DNA motifs binding with different proteins and to study the DNA–protein interactions. The oligonucleotide microchips are a cheap and reliable diagnostic tool designed for mass application. Biochips have been developed for identification of the tuberculosis pathogen and its antibiotic-resistant forms; of orthopoxviruses, including the smallpox virus; of the anthrax pathogen; and chromosomal rearrangements in leukemia patients. The protein microchips can be adapted for further use in proteo-mics. Bacterial and yeast cells were also immobilized in the gel, maintaining their viability, which opens a wide potential for creating biosensors on the basis of microchips.  相似文献   
8.
We describe a novel microarray-based approach for simultaneous identification and quantification of human immunodeficiency virus type 1 (HIV-1) and hepatitis B and C viruses (HBV and HCV) in donor plasma specimens. The method is based on multiplex real-time RT-PCR performed within the microarray hydrogel pads. Double-stranded amplification products are simultaneously detected using nonspecific SYBR Green I dye due to the reaction run in separate pads bearing 5'-immobilized specific primers. Both the sensitivity and specificity of the assay, based on 132 blood specimens analyzed, were 100% (56, 26, and 8 specimens were seropositive to HBV HCV and HIV-1, respectively; 22 were positive to both HIV-1 and HCV and 2 positive to all three viruses; 18 samples were pathogen-negative). The dynamic range of the quantitative analysis covered a six-order interval ranging from 100 to 106 genome equivalents per assay. The 95% detection limits were 14 gEq for HIV-1, 10 gEq (1.7 IU) for HBV, and 15 gEq (7.5 IU) for HCV per assay. The proposed approach is considered to be versatile and could be adapted for simultaneous identification and quantification of numerous genetic targets.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号