首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   2篇
  2021年   1篇
  2019年   1篇
  2015年   4篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   7篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1997年   1篇
  1995年   1篇
  1992年   2篇
  1991年   5篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
  1966年   3篇
  1965年   1篇
排序方式: 共有70条查询结果,搜索用时 31 毫秒
1.
A new kinetic model of the xanthophyll cycle is proposed. The model is based on the assumption that the light-dependent interconversion of the so-called available and unavailable violaxanthin constitutes the rate-limiting process of the cycle at intermediate, non-saturating light intensities. This assumption, together with the known properties of violaxanthin de-epoxidase, explains all specific features of the experimental facts.  相似文献   
2.
3.
In this study, we analyzed multibilayer lipid-protein membranes composed of the photosynthetic light-harvesting complex II (LHCII; isolated from spinach [Spinacia oleracea]) and the plant lipids monogalcatosyldiacylglycerol and digalactosyldiacylglycerol. Two types of pigment-protein complexes were analyzed: those isolated from dark-adapted leaves (LHCII) and those from leaves preilluminated with high-intensity light (LHCII-HL). The LHCII-HL complexes were found to be partially phosphorylated and contained zeaxanthin. The results of the x-ray diffraction, infrared imaging microscopy, confocal laser scanning microscopy, and transmission electron microscopy revealed that lipid-LHCII membranes assemble into planar multibilayers, in contrast with the lipid-LHCII-HL membranes, which form less ordered structures. In both systems, the protein formed supramolecular structures. In the case of LHCII-HL, these structures spanned the multibilayer membranes and were perpendicular to the membrane plane, whereas in LHCII, the structures were lamellar and within the plane of the membranes. Lamellar aggregates of LHCII-HL have been shown, by fluorescence lifetime imaging microscopy, to be particularly active in excitation energy quenching. Both types of structures were stabilized by intermolecular hydrogen bonds. We conclude that the formation of trans-layer, rivet-like structures of LHCII is an important determinant underlying the spontaneous formation and stabilization of the thylakoid grana structures, since the lamellar aggregates are well suited to dissipate excess energy upon overexcitation.  相似文献   
4.
Amphotericin B (AmB) is a polyene antibiotic frequently applied in the treatment of fungal infections. According to the general understanding, the mode of action of AmB is directly related to the molecular organization of the drug in the lipid environment, in particular to the formation of pore-like molecular aggregates. Electronic absorption and fluorescence techniques were applied to investigate formation of molecular aggregates of AmB in the lipid environment of liposomes and monomolecular layers formed at the argon-water interface. It appears that AmB dimers, stabilized by van der Waals interactions, are present in the membrane environment along with the aggregates formed by a greater number of molecules. Linear dichroism measurements reveal that AmB is distributed between two fractions of molecules, differently oriented with respect to the bilayer. Molecules in one fraction remain parallel to the plane of the membrane and molecules in the other one are perpendicular. Scanning Force Microscopy imaging of the surface topography of the monolayers formed with AmB in the presence of lipids reveals formation of pore-like structures characterized by the external diameter close to 17 A and the internal diameter close to 6 A. All the findings are discussed in terms of importance of the molecular organization of AmB in the pharmacological action, as well as of the toxic side effects of the drug.  相似文献   
5.
Lysenin is a self-assembling, pore-forming toxin which specifically recognizes sphingomyelin. Mutation of tryptophan 20 abolishes lysenin oligomerization and cytolytic activity. We studied the interaction of lysenin WT and W20A with sphingomyelin in membranes of various lipid compositions which, according to atomic force microscopy studies, generated either homo- or heterogeneous sphingomyelin distribution. Liposomes composed of SM/DOPC, SM/DOPC/cholesterol and SM/DPPC/cholesterol could bind the highest amounts of GST-lysenin WT, as shown by surface plasmon resonance analysis. These lipid compositions enhanced the release of carboxyfluorescein from liposomes induced by lysenin WT, pointing to the importance of heterogeneous sphingomyelin distribution for lysenin WT binding and oligomerization. Lysenin W20A bound more weakly to sphingomyelin-containing liposomes than did lysenin WT. The same amounts of lysenin W20A bound to sphingomyelin mixed with either DOPC or DPPC, indicating that the binding was not affected by sphingomyelin distribution in the membranes. The mutant lysenin had a limited ability to penetrate hydrophobic region of the membrane as indicated by measurements of surface pressure changes. When applied to detect sphingomyelin on the cell surface, lysenin W20A formed large conglomerates on the membrane, different from small and regular clusters of lysenin WT. Only lysenin WT recognized sphingomyelin pool affected by formation of raft-based signaling platforms. During fractionation of Triton X-100 cell lysates, SDS-resistant oligomers of lysenin WT associated with membrane fragments insoluble in Triton X-100 while monomers of lysenin W20A partitioned to Triton X-100-soluble membrane fractions. Altogether, the data suggest that oligomerization of lysenin WT is a prerequisite for its docking in raft-related domains.  相似文献   
6.
Peridinin-chlorophyll a protein (PCP) is a unique water soluble antenna complex that employs the carotenoid peridinin as the main light-harvesting pigment. In the present study the near edge X-ray absorption fine structure (NEXAFS) spectrum of PCP was recorded at the carbon K-edge. Additionally, the NEXAFS spectra of the constituent pigments, chlorophyll a and peridinin, were measured. The energies of the lowest unoccupied molecular levels of these pigments appearing in the carbon NEXAFS spectrum were resolved. Individual contributions of the pigments and the protein to the measured NEXAFS spectrum of PCP were determined using a “building block” approach combining NEXAFS spectra of the pigments and the amino acids constituting the PCP apoprotein. The results suggest that absorption changes of the pigments in the carbon near K-edge region can be resolved following excitation using a suitable visible pump laser pulse. Consequently, it may be possible to study excitation energy transfer processes involving “optically dark” states of carotenoids in pigment-protein complexes by soft X-ray probe optical pump double resonance spectroscopy (XODR).  相似文献   
7.
The xanthophyll cycle pigments, violaxanthin and zeaxanthin, present outside the light-harvesting pigment-protein complexes of Photosystem II (LHCII) considerably enhance specific aggregation of proteins as revealed by analysis of the 77 K chlorophyll a fluorescence emission spectra. Analysis of the infrared absorption spectra in the Amide I region shows that the aggregation is associated with formation of intermolecular hydrogen bonding between the alpha helices of neighboring complexes. The aggregation gives rise to new electronic energy levels, in the Soret region (530 nm) and corresponding to the Q spectral region (691 nm), as revealed by analysis of the resonance light scattering spectra. New electronic energy levels are interpreted in terms of exciton coupling of protein-bound photosynthetic pigments. The energy of the Q excitonic level of chlorophyll is not high enough to drive the light reactions of Photosystem II but better suited to transfer excitation energy to Photosystem I, which creates favourable energetic conditions for the state I-state II transition. The lack of fluorescence emission from this energy level, at physiological temperatures, is indicative of either very high thermal energy conversion rate or efficient excitation quenching by carotenoids. Chlorophyll a fluorescence was quenched up to 61% and 34% in the zeaxanthin- and violaxanthin-containing samples, respectively, as compared to pure LHCII. Enhanced aggregation of LHCII, observed in the presence of the xanthophyll cycle pigments, is discussed in terms of the switch between light-harvesting and energy dissipation systems.  相似文献   
8.
The supramolecular reorganization of LHCII complexes within the thylakoid membrane in Secale cereale leaves under low and high light condition was examined. Rye seedlings were germinated hydroponically in a climate chamber with a 16 h daylight photoperiod, photosynthetic photon flux density (PPFD) of 150 μmol m−2 s−1 and 24/16 °C day/night temperature. The influence of pre-illumination of the plants with high light intensity on the PSII antenna complexes was studied by comparison of the structure and function of the LHCII complexes and organization of thylakoid membranes isolated from 10-day-old plants illuminated with low (150 μmol m−2 s−1) or high (1200 μmol m−2 s−1) light intensity. Aggregated and trimeric with monomeric forms of LHCII complexes were separated from the whole thylakoid membranes using non-denaturing electrophoresis. Analyses of fluorescence emission spectra of these different LHCII forms showed that the monomer was the most effective aggregating antenna form. Moreover, photoprotection connected with LHCII aggregation was more effective upon LHCII monomers in comparison to trimer aggregation. Light stress induced specific organization of neighboring LHCII complexes, causing an increase in fluorescence yield of the long-wavelength bands (centered at 701 and 734 nm). The changes in the organization of the thylakoid membrane under light stress, observed by analysis of absorbance spectra obtained by Fourier transform infrared spectroscopy, also indicated light-induced LHCII aggregation.  相似文献   
9.
This study deals with the influence of cadmium on the structure and function of ferredoxin:NADP(+) oxidoreductase (FNR), one of the key photosynthetic enzymes. We describe changes in the secondary and tertiary structure of the enzyme upon the action of metal ions using circular dichroism measurements, Fourier transform infrared spectroscopy and fluorometry, both steady-state and time resolved. The decrease in FNR activity corresponds to a gentle unfolding of the protein, caused mostly by a nonspecific binding of metal ions to multiple sites all over the enzyme molecule. The final inhibition event is most probably related to a bond created between cadmium and cysteine in close proximity to the FNR active center. As a result, the flavin cofactor is released. The cadmium effect is compared to changes related to ionic strength and other ions known to interact with cysteine. The complete molecular mechanism of FNR inhibition by heavy metals is discussed.Electronic supplementary material The online version of this article (doi:10.1007/s10867-012-9262-z) contains supplementary material, which is available to authorized users.  相似文献   
10.
Polar carotenoid pigment zeaxanthin (β,β-carotene-3,3′-diol) incorporated into planar lipid membranes formed with diphytanoyl phosphatidylcholine increases the specific electric resistance of the membrane from ca. 4 to 13 × 107 Ω cm2 (at 5 mol% zeaxanthin with respect to lipid). Such an observation is consistent with the well known effect of polar carotenoids in decreasing fluidity and structural stabilization of lipid bilayers. Zeaxanthin incorporated into the lipid membrane at 1 mol% has very small effect on the overall membrane resistance but facilitates equilibration of the transmembrane proton gradient, as demonstrated with the application of the H+-sensitive antimony electrodes. Relatively low changes in the electrical potential suggest that the equilibration process may be associated with a symport/antiport activity or with a transmembrane transfer of the molecules of acid. UV-Vis linear dichroism analysis of multibilayer formed with the same lipid-carotenoid system shows that the transition dipole moment of the pigment molecules forms a mean angle of 21° with respect to the axis normal to the plane of the membrane. This means that zeaxanthin spans the membrane and tends to have its two hydroxyl groups anchored in the opposite polar zones of the membrane. Detailed FTIR analysis of β-carotene and zeaxanthin indicates that the polyene chain of carotenoids is able to form weak hydrogen bonds with water molecules. Possible molecular mechanisms responsible for proton transport by polyenes are discussed, including direct involvement of the polyene chain in proton transfer and indirect effect of the pigment on physical properties of the membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号