首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   22篇
  2019年   1篇
  2018年   1篇
  2015年   7篇
  2014年   3篇
  2013年   6篇
  2012年   6篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   8篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   5篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1988年   3篇
  1987年   2篇
  1986年   7篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   4篇
排序方式: 共有126条查询结果,搜索用时 46 毫秒
1.
Immunocytochemical methods were used to show that Ng-CAM (the neuron-glia cell adhesion molecule), N-CAM (the neural cell adhesion molecule), and the extracellular matrix protein cytotactin are highly concentrated at nodes of Ranvier of the adult chicken and mouse. In contrast, unmyelinated axonal fibers were uniformly stained by specific antibodies to both CAMs but not by antibodies to cytotactin. Ultrastructural immunogold techniques indicated that both N-CAM and Ng-CAM were enriched in the nodal axoplasm and axolemma of myelinated fibers as well as within the nodal regions of the myelinating Schwann cell. At embryonic day 14, before myelination had occurred, small-caliber fibers of chick embryos showed periodic coincident accumulations of the two CAMs but not of cytotactin, with faint labeling in the axonal regions between accumulations. Cytotactin was found on Schwann cells and in connective tissue. By embryonic day 18, nodal accumulations of CAMs were first observed in a few medium- and large-caliber fibers. Immunoblot analyses indicated that embryonic to adult conversion of N-CAM and a progressive decrease in the amount of Ng-CAM and N-CAM occurred while nodes were forming. Sciatic nerves of mouse mutants with defects in cell interactions showed abnormalities in the distribution patterns and amount of Ng-CAM, N-CAM, and cytotactin that were consistent with the known morphological nodal disorders. In trembler (+/Tr), intense staining for both CAMs appeared all along the fibers and the amounts of N-CAM in the sciatic nerve were found to be increased. In mice with motor endplate disease (med/med), Ng-CAM and N-CAM, but not cytotactin, were localized in the widened nodes. Both trembler and med/med Schwann cells stained intensely for cytotactin, in contrast to normal Schwann cells which stained only slightly. All of these findings are consistent with the hypothesis that surface modulation of neuronal CAMs mediated by signals shared between neurons and glia may be necessary for establishing and maintaining the nodes of Ranvier.  相似文献   
2.
Individual neurons can express both the neural cell adhesion molecule (N-CAM) and the neuron-glia cell adhesion molecule (Ng-CAM) at their cell surfaces. To determine how the functions of the two molecules may be differentially controlled, we have used specific antibodies to each cell adhesion molecule (CAM) to perturb its function, first in brain membrane vesicle aggregation and then in tissue culture assays testing the fasciculation of neurite outgrowths from cultured dorsal root ganglia, the migration of granule cells in cerebellar explants, and the formation of histological layers in the developing retina. Our strategy was initially to delineate further the binding mechanisms for each CAM. Antibodies to Ng-CAM and N-CAM each inhibited brain membrane vesicle aggregation but the binding mechanisms of the two CAMs differed. As expected from the known homophilic binding mechanism of N-CAM, anti-N- CAM-coated vesicles did not co-aggregate with uncoated vesicles. Anti- Ng-CAM-coated vesicles readily co-aggregated with uncoated vesicles in accord with a postulated heterophilic binding mechanism. It was also shown that N-CAM was not a ligand for Ng-CAM. In contrast to assays with brain membrane vesicles, cellular systems can reveal functional differences for each CAM reflecting its relative amount (prevalence modulation) and location (polarity modulation). Consistent with this, each of the three cellular processes examined in vitro was preferentially inhibited only by anti-N-CAM or by anti-Ng-CAM antibodies. Both neurite fasciculation and the migration of cerebellar granule cells were preferentially inhibited by anti-Ng-CAM antibodies. Anti-N-CAM antibodies inhibited the formation of histological layers in the retina. The data on perturbation by antibodies were correlated with the relative levels of expression of Ng-CAM and N-CAM in each of these different neural regions. Quantitative immunoblotting experiments indicated that the relative Ng-CAM/N-CAM ratios in comparable extracts of brain, dorsal root ganglia, and retina were respectively 0.32, 0.81, and 0.04. During culture of dorsal root ganglia in the presence of nerve growth factor, the Ng-CAM/N-CAM ratio rose to 4.95 in neurite outgrowths and 1.99 in the ganglion proper, reflecting both polarity and prevalence modulation. These results suggest that the relative ability of anti-Ng-CAM and anti-N-CAM antibodies to inhibit cell-cell interactions in different neural tissues is strongly correlated with the local Ng-CAM/N-CAM ratio.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
3.
The neuron-glia cell adhesion molecule (Ng-CAM) has been identified in mammalian brain tissue and PC12 pheochromocytoma cells as Mr 200,000 and Mr 230,000 species, respectively. When PC12 cells were treated with nerve growth factor (NGF), the amount of Ng-CAM at the cell surface was increased approximately threefold, whereas the amount of the neural cell adhesion molecule (N-CAM) remained unchanged. An NGF-inducible large external glycoprotein (NILE) has been previously identified by its enhanced expression in NGF-treated PC12 cells. Ng-CAM and NILE are similar in molecular weight, expression during development, and responsiveness to NGF in PC12 cells, suggesting that the two molecules are related. In addition, antibodies to Ng-CAM and NILE cross-reacted and the molecules had similar peptide maps after limited proteolysis. Moreover, antibodies to Ng-CAM inhibited fasciculation of neurites, a functional property shared with NILE. The results show that cell adhesion molecules can respond selectively to growth factors and suggest that NILE is, in fact, mammalian Ng-CAM.  相似文献   
4.
The sequential appearance of the extracellular matrix (ECM) protein, cytotactin, was examined during development of the chicken embryo by immunohistochemical techniques. Although cytotactin was identified as a molecule that mediates glia-neuron interactions, preliminary immunohistochemical localization of the molecule suggested that it was an ECM protein with a widespread but nonetheless more restricted distribution than either fibronectin or laminin. In the present study, it was found that cytotactin is first present in the gastrulating chicken embryo. It appears later in the basement membrane of the developing neural tube and notochord in a temporal sequence beginning in the cephalic regions and proceeding caudally. Between 2 and 3 d of development, the molecule is present at high levels in the early neural crest pathways (surrounding the neural tube and somites) but, in contrast to fibronectin and laminin, is not found in the lateral plate mesoderm or ectoderm. At later times, cytotactin is expressed extensively in the central nervous system, in lesser amounts in the peripheral nervous system, and in a number of nonneural sites, most prominently in all smooth muscles and in basement membranes of lung and kidney. Cytotactin appears in adult tissues with distributions that are similar to those seen in embryonic tissues. The findings raise the possibility that certain ECM proteins contribute to pattern formation in embryogenesis as a result of their restricted expression in a spatiotemporally regulated fashion at some sites but not at others.  相似文献   
5.
By means of a multistage quantitative assay, we have identified a new kind of cell adhesion molecule (CAM) on neuronal cells of the chick embryo that is involved in their adhesion to glial cells. The assay used to identify the binding component (which we name neuron-glia CAM or Ng-CAM) was designed to distinguish between homotypic binding (e.g., neuron to neuron) and heterotypic binding (e.g., neuron to glia). This distinction was essential because a single neuron might simultaneously carry different CAMs separately mediating each of these interactions. The adhesion of neuronal cells to glial cells in vitro was previously found to be inhibited by Fab' fragments prepared from antisera against neuronal membranes but not by Fab' fragments against N-CAM, the neural cell adhesion molecule. This suggested that neuron-glia adhesion is mediated by specific cell surface molecules different from previously isolated CAMs . To verify that this was the case, neuronal membrane vesicles were labeled internally with 6-carboxyfluorescein and externally with 125I-labeled antibodies to N-CAM to block their homotypic binding. Labeled vesicles bound to glial cells but not to fibroblasts during a 30-min incubation period. The specific binding of the neuronal vesicles to glial cells was measured by fluorescence microscopy and gamma spectroscopy of the 125I label. Binding increased with increasing concentrations of both glial cells and neuronal vesicles. Fab' fragments prepared from anti-neuronal membrane sera that inhibited binding between neurons and glial cells were also found to inhibit neuronal vesicle binding to glial cells. The inhibitory activity of the Fab' fragments was depleted by preincubation with neuronal cells but not with glial cells. Trypsin treatment of neuronal membrane vesicles released material that neutralized Fab' fragment inhibition; after chromatography, neutralizing activity was enriched 50- fold. This fraction was injected into mice to produce monoclonal antibodies; an antibody was obtained that interacted with neurons, inhibited binding of neuronal membrane vesicles to glial cells, and recognized an Mr = 135,000 band in immunoblots of embryonic chick brain membranes. These results suggest that this molecule is present on the surfaces of neurons and that it directly or indirectly mediates adhesion between neurons and glial cells. Because the monoclonal antibody as well as the original polyspecific antibodies that were active in the assay did not bind to glial cells, we infer that neuron- glial interaction is heterophilic, i.e., it occurs between Ng-CAM on neurons and an as yet unidentified CAM present on glial cells.  相似文献   
6.
The JY328 clone was identified in a human genomic library using cDNA corresponding to mRNA for HLA-B7 as a probe. The L/328 cell line was established by cotransformation of mouse Ltk cells with the herpes thymidine kinase gene and clone JY328. On Northern blots, RNA from,L/328 strongly hybridized to an HLA class I probe, and an antigen was recognized by an anti-HLA class I framework antibody on the cell surface. A DNA probe corresponding to a segment of intron 7 was developed by comparing the nucleotide sequence of clone JY328 with that of other HLA class I-type genes. Using the radiolabeled probe to screen Southern blots of DNA from families with siblings exhibiting intra-HLA recombinations, a restriction fragment length polymorphism was revealed —a 1.4 kb BstE II band not present in all individuals. A corresponding fragment was apparent in the base sequence of clone JY328. The occurrence of this band on Southern blots established that JY328 maps distinct from and centromeric to the HLA-C locus and near to the HLA-B locus. Antibody absorption studies and cytotoxicity tests indicated that the JY328 gene product was not an HLA-B antigen but that it did specifically absorb CW7-specific antibody. In sum, these results suggest a novel, polymorphic HLA class I gene which expresses a product serologically similar to HLA-Cw7 but which does not map within the corresponding locus.  相似文献   
7.
Immunochemical variants of HLA-B27   总被引:2,自引:0,他引:2  
Detailed study of HLA-B27 was prompted by the extremely strong associations between this antigen and spondyloarthropathies. Despite the relative homogeneity of this antigen when defined by alloantisera, B27 reactivity with the monoclonal antibody B27M2 suggests previously unrecognized heterogeneity. To define and confirm this heterogeneity on a molecular level, detergent extracts were prepared from B cell lines derived from individuals reactive (+) or unreactive (-) with the B27M2 antibody. Extracts were immunoprecipitated by specific allogeneic or monoclonal antibodies and analyzed by two-dimensional polyacrylamide gel electrophoresis. By this method the B27M2+ and B27M2- variants of HLA-B27 had different isoelectric points (pl) and could be distinguished from each other and from a different (Bw44) control alloantigen. Blockade of glycosylation by pretreatment of cells with tunicamycin did not alter pl but did reduce HLA antigens by approximately 3000 daltons. These data demonstrate that B27 antigens can be subdivided into subsets with different molecular composition. The effects of this heterogeneity upon the associations of B27 and disease are not yet known.  相似文献   
8.
The inbred cucumber (Cucumis sativus L.) line TMG-1 is resistant to three potyviruses:zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and the watermelon strain of papaya ringspot virus (PRSV-W). The genetics of resistance to WMV and the relationship of WMV resistance to ZYMV resistance were examined. TMG-1 was crossed with WI-2757, a susceptible inbred line. F1, F2 and backcross progeny populations were screened for resistance to WMV and/or ZYMV. Two independently assorting factors conferred resistance to WMV. One resistance was conferred by a single recessive gene from TMG-1 (wmv-2). The second resistance was conferred by an epistatic interaction between a second recessive gene from TMG-1 (wmv-3) and either a dominant gene from WI-2757 (Wmv-4) or a third recessive gene from TMG-1 (wmv-4) located 20–30 cM from wmv-3. The two resistances exhibited tissue-specific expression. Resistance conferred by wmv-2 was expressed in the cotyledons and throughout the plant. Resistance conferred by wmv-3 + Wmv-4 (or wmv-4) was expressed only in true leaves. The gene conferring resistance to ZYMV appeared to be the same as, or tightly linked to one of the WMV resistance genes, wmv-3.  相似文献   
9.
The neuron-glia cell adhesion molecule (Ng-CAM) mediates both neuron-neuron and neuron-glia adhesion; it is detected on SDS-PAGE as a predominant 135-kD glycoprotein, with minor components of 80, 190, and 210 kD. We have isolated cDNA clones encoding the entire sequence of chicken Ng-CAM. The predicted extracellular region includes six immunoglobulin-like domains followed by five fibronectin-type III repeats, structural features that are characteristic of several neural CAMs of the N-CAM superfamily. The amino acid sequence of chicken Ng-CAM is most similar to that of mouse L1 but the overall identity is only 40% and Ng-CAM contains a short fibronectin-like segment with an RGD sequence that has no counterpart in L1. These findings suggest that Ng-CAM and L1 may not be equivalent molecules in chicken and mouse. The amino-terminal sequences of the 210-, 190-, and 135-kD components of Ng-CAM are all the same as the predicted amino terminus of the molecule, whereas the 80-kD component begins within the third fibronectin repeat. The cDNA sequence is continuous across the junction between the 135- and 80-kD components, and a single 170-kD Ng-CAM polypeptide was isolated from tunicamycin-treated cells. In addition, all cDNA probes hybridized on Northern blots to a 6-kb RNA, and most hybridized to single bands on Southern blots. These results indicate that the Ng-CAM components are derived from a single polypeptide encoded by a single gene, and that the 135- and 80-kD components are generated from the 210/190-kD species by proteolytic cleavage. The 135-kD component contains most of the extracellular region including all of the immunoglobulin-like domains. It has no transmembrane segment, but it is tightly associated with the membrane. The 80-kD component contains two and a half type III repeats plus the RGD-containing segment, as well as the single transmembrane and cytoplasmic domains. These structural features of Ng-CAM provide a framework for understanding its multiple functions in neuron-neuron interactions, neurite fasciculation, and neuron-glia interactions.  相似文献   
10.
Spleen cell killing of target cells can manifest through spleen cell-target cell interaction in the presence of mitogenic lectin, lectin-dependent cell-mediated cytotoxicity (LDCC). Spleen cells from C57B1/6 mice immunized with C3H mouse cells were found to be capable of cytotoxicity against autologous and other C57B1/6 spleen cells in the presence of Con A. Thus, alloimmune spleen cells are capable of an anti-self cytotoxic response in the presence of mitogenic lectin, antiautologous LDCC. Antiautologous LDCC is blocked by preincubation of cytotoxic cells with colchicine, an inhibitor of the cytotoxic effector mechanism. Analysis of alloimmune spleen cell subpopulations suggests that the antiautologous LDCC cell is an immature alloimmune cytotoxic cell (prekiller cell). Potent LDCC was found in alloimmune spleen cell preparations depleted of alloimmune cytotoxic T cells (killer-depleted) by three passes on allogeneic cell monolayers genetically identical with the immunizing cell. However, some LDCC effectors were also found to adhere to the adsorbing target, suggesting that there is some maturational diversity among LDCC effectors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号