首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   6篇
  2014年   8篇
  2013年   9篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1995年   1篇
  1994年   3篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   5篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
1.
The mechanism whereby nitroglycerin relaxes vascular smooth muscle remains uncertain. A current hypothesis suggests that nitroglycerin reacts with critical cellular sulfhydryl groups to form an intermediate, which activates guanylate cyclase, resulting in cGMP accumulation and relaxation. This study investigated further the potential involvement of sulfhydryls in nitroglycerin-induced vascular smooth muscle relaxation by evaluating effects of a variety of sulfhydryl alkylating and reducing agents on responses to nitroglycerin and other relaxants in bovine coronary arterial strips submaximally contracted using 30 mM K. Whereas 10(-4) M 5,5'-dithiobis-(2-nitrobenzoic acid), 10(-5) MN-ethylmaleimide, and 10(-4) MN-naphthylmaleimide did not affect nitroglycerin-induced relaxation, 10(-4) MN-ethylmaleimide and 10(-4) M ethacrynic acid significantly inhibited relaxation induced by nitroglycerin. Both ethacrynic acid and N-ethylmaleimide at 10(-4) M also inhibited relaxation induced by sodium nitroprusside. N-ethylmaleimide, but not ethacrynic acid, inhibited relaxation induced by isoproterenol and forskolin. Ethacrynic acid significantly reduced both relaxation and cGMP elevation induced by both 10(-7) M nitroglycerin and 10(-7) M sodium nitroprusside. Ethacrynic acid, but not N-ethylmaleimide, significantly reduced relaxation induced by 8-Br-cGMP. Pretreatment with the sulfhydryl-containing agents N-acetylcysteine, 2-mercaptoethanol, or dithiothreitol, at 10(-3) M did not affect nitroglycerin-induced relaxation in nontolerant arteries. Similarly, N-acetylcysteine and dithiothreitol did not alter the depressed responses to nitroglycerin in arteries in which tolerance to nitroglycerin was induced in vitro. A slight but statistically significant reversal of nitroglycerin-tolerance occurred after treatment of tolerant arteries with 2-mercaptoethanol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
蚕豆植株叶片随茎节自上而下表现出明显的发育与衰老顺序,可作为衰老特征的是叶绿素和蛋白质含量明显下降。蚕豆叶中SOD活性主要定位于12 000× g离心后所得的上清液和叶绿体组分。衰老叶片的SOD总活性和叶绿体组分的相对活性都有所下降,SOD同工酶谱也发生了改变。O_2~ 产生速率随叶龄增大而稍上升;而MDA含量在叶片外观表现枯黄衰老征兆前就急剧上升。可能因为衰老叶片过氧化氢酶活性大幅度下降与SOD之间的不平衡,致使O_2~ 代谢中间产物累积而引起膜的损伤.  相似文献   
3.
4.
By in vitro translation of mRNA’s isolated from free and membrane-bound polysomes, direct evidence was obtained for the synthesis of two lysosomal hydrolases, β-glucuronidase of the rat preputial gland and cathespin D of mouse spleen, on polysomes bound to rough endoplasmic reticulum (ER) membranes. When the mRNA’s for these two proteins were translated in the presence of microsomal membranes, the in vitro synthesized polypeptides were cotranslationally glycosylated and transferred into the microsomal lumen. Polypeptides synthesized in the absence of microsomal membranes were approximately 2,000 daltons larger than the respective unglycosylated microsomal polypeptides found after short times of labeling in cultured rat liver cells treated with tunicamycin. This strongly suggests that nascent chains of the lysosomal enzymes bear transient amino terminal signals which determine synthesis on bound polysomes and are removed during the cotranslational insertion of the polypeptides into the ER membranes. In the line of cultured rat liver cells used for this work, newly synthesized lysosomal hydrolases showed a dual destination; approximately 60 percent of the microsomal polypeptides detected after short times of labeling were subsequently processed proteolytically to lower molecular weight forms characteristic of the mature enzymes. The remainder was secreted from the cells without further proteolytic processing. As previously observed by other investigations in cultured fibroblasts (A. Gonzalez-Noriega, J.H. Grubbs, V. Talkad, and W.S. Sly, 1980, J Cell Biol. 85: 839-852; A. Hasilik and E.F. Neufeld, 1980, J. Biol. Chem., 255:4937-4945.) the lysosomotropic amine chloroquine prevented the proteolytic maturation of newly synthesized hydrolases and enhanced their section. In addition, unglycosylated hydrolases synthesized in cells treated with tunicamycin were exclusively exported from the cells without undergoing proteolytic processing. These results support the notions that modified sugar residues serve as sorting out signals which address the hydrolases to their lysosomal destination and that final proteolytic cleavage of hydrolase precursors take place within lysosome itself. Structural differences in the carbohydrate chains of intracellular and secreted precursors of cathespin D were detected from their differential sensitivity to digestion with endoglycosidases H and D. These observations suggest that the hydrolases exported into the medium follow the normal secretory route and that some of their oligosaccharides are subject to modifications known to affect many secretory glycoproteins during their passage through the Golgi apparatus.  相似文献   
5.
MR structural T1-weighted imaging using high field systems (>3T) is severely hampered by the existing large transmit field inhomogeneities. New sequences have been developed to better cope with such nuisances. In this work we show the potential of a recently proposed sequence, the MP2RAGE, to obtain improved grey white matter contrast with respect to conventional T1-w protocols, allowing for a better visualization of thalamic nuclei and different white matter bundles in the brain stem. Furthermore, the possibility to obtain high spatial resolution (0.65 mm isotropic) R1 maps fully independent of the transmit field inhomogeneities in clinical acceptable time is demonstrated. In this high resolution R1 maps it was possible to clearly observe varying properties of cortical grey matter throughout the cortex and observe different hippocampus fields with variations of intensity that correlate with known myelin concentration variations.  相似文献   
6.
Glutamate 47 is conserved in 1-aminocyclopropane-1-carboxylate (ACC) synthases and is positioned near the sulfonium pole of (S,S)-S-adenosyl-L-methionine (SAM) in the modeled pyridoxal phosphate quinonoid complex with SAM. E47Q and E47D constructs of ACC synthase were made to investigate a putative ionic interaction between Glu47 and SAM. The k(cat)/K(m) values for the conversion of (S,S)-SAM to ACC and methylthioadenosine (MTA) are depressed 630- and 25-fold for the E47Q and E47D enzymes, respectively. The decreases in the specificity constants are due to reductions in k(cat) for both mutant enzymes, and a 5-fold increase in K(m) for the E47Q enzyme. Importantly, much smaller effects were observed for the kinetic parameters of reactions with the alternate substrates L-vinylglycine (L-VG) (deamination to form alpha-ketobutyrate and ammonia) and L-alanine (transamination to form pyruvate), which have uncharged side chains. L-VG is both a substrate and a mechanism-based inactivator of the enzyme [Feng, L., and Kirsch, J. F. (2000) Biochemistry 39, 2436-2444], but the partition ratio, k(cat)/k(inact), is unaffected by the Glu47 mutations. ACC synthase primarily catalyzes the beta,gamma-elimination of MTA from the (R,S) diastereomer of SAM to produce L-VG [Satoh, S., and Yang, S. F. (1989) Arch.Biochem. Biophys. 271, 107-112], but catalyzes the formation of ACC to a lesser extent via alpha,gamma-elimination of MTA. The partition ratios for (alpha,gamma/beta,gamma)-elimination on (R,S)-SAM are 0.4, < or =0.014, and < or =0.08 for the wild-type, E47Q, and E47D enzymes, respectively. The results of these experiments strongly support a role for Glu47 as an anchor for the sulfonium pole of (S,S)-SAM, and consequently a role as an active site determinant of reaction specificity.  相似文献   
7.
Brain glycogen metabolism was recently observed in vivo and found to be very slow in the lightly alpha-chloralose anesthetized rat [J. Neurochem. 73 (1999) 1300]. Based on that slow turnover, the total glycogen content in the awake rat brain and its turnover time were assessed after administering 13C-labeled glucose for 48 h. Label incorporation into glycogen, glucose, amino acid, and N-acetyl-aspartate (NAA) resonances was observed. The amount of 13C label incorporated into glycogen was variable and did not correlate with that in glutamate (r=-0.1, P>0.86). However, the amount of 13C label incorporated into glycogen was very similar to that in NAA (r=0.93), implying similar turnover times between brain glycogen and NAA (approximately 10 h). Absolute quantification of the total concentration of brain glycogen in the awake, normoglycemic rat yielded 3.3+/-0.8 micromol/g (n=6, mean+/-S.D.).  相似文献   
8.
After administration of enriched [1-13C]glucose, the rate of 13C label incorporation into glutamate C4, C3, and C2, glutamine C4, C3, and C2, and aspartate C2 and C3 was simultaneously measured in six normal subjects by 13C NMR at 4 Tesla in 45-ml volumes encompassing the visual cortex. The resulting eight time courses were simultaneously fitted to a mathematical model. The rate of (neuronal) tricarboxylic acid cycle flux (V(PDH)), 0.57 +/- 0.06 micromol. g(-1). min(-1), was comparable to the exchange rate between (mitochondrial) 2-oxoglutarate and (cytosolic) glutamate (Vx), 0.57 +/- 0.19 micromol. g(-1). min(-1)), which may reflect to a large extent malate-aspartate shuttle activity. At rest, oxidative glucose consumption [CMR(Glc(ox))] was 0.41 +/- 0.03 miccromol. g(-1). min(-1), and (glial) pyruvate carboxylation (VPC) was 0.09 +/- 0.02 micromol. g(-1). min(-1). The flux through glutamine synthetase (Vsyn) was 0.26 +/- 0.06 micromol. g(-1). min(-1). A fraction of Vsyn was attributed to be from (neuronal) glutamate, and the corresponding rate of apparent glutamatergic neurotransmission (VNT) was 0.17 +/- 0.05 micromol. g(-1). min(-1). The ratio [VNT/CMR(Glcox)] was 0.41 +/- 0.14 and thus clearly different from a 1:1 stoichiometry, consistent with a significant fraction (approximately 90%) of ATP generated in astrocytes being oxidative. The study underlines the importance of assumptions made in modeling 13C labeling data in brain.  相似文献   
9.
Phylogenetic relationships were determined for 76 partial P-element sequences from 14 species of the melanogaster species group within the Drosophila subgenus Sophophora. These results are examined in the context of the phylogeny of the species from which the sequences were isolated. Sequences from the P-element family fall into distinct subfamilies, or clades, which are often characteristic for particular species subgroups. When examined locally among closely related species, the evolution of P elements is characterized by vertical transmission, whereby the P-element phylogeny traces the species phylogeny. On a broader scale, however, the P-element phylogeny is not congruent with the species phylogeny. One feature of P-element evolution in the melanogaster group is the presence of more than one P-element subfamily, differing by as much as 36%, in the genomes of some species. Thus, P elements from several individual species are not monophyletic, and a likely explanation for the incongruence between P-element and species phylogenies is provided by the comparison of paralogous sequences. In certain instances, horizontal transfer seems to be a valid alternative explanation for lack of congruence between species and P-element phylogenies. The canonical P-element subfamily, which represents the active, autonomous transposable element, is restricted to D. melanogaster. Thus, its origin clearly lies outside of the melanogaster species group, consistent with the earlier conclusion of recent horizontal transfer.   相似文献   
10.

Background  

Cellular responses to death-promoting stimuli typically proceed through a differentiated multistage process, involving a lag phase, extensive death, and potential adaptation. Deregulation of this chain of events is at the root of many diseases. Improper adaptation is particularly important because it allows cell sub-populations to survive even in the continuous presence of death conditions, which results, among others, in the eventual failure of many targeted anticancer therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号