首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   6篇
  2014年   1篇
  2012年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   3篇
  1986年   1篇
  1982年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
C T Grubmeyer  K W Chu  S Insinga 《Biochemistry》1987,26(12):3369-3373
Salmonella typhimurium histidinol dehydrogenase produces histidine from the amino alcohol histidinol by two sequential NAD-linked oxidations which form and oxidize a stable enzyme-bound histidinaldehyde intermediate. The enzyme was found to catalyze the exchange of 3H between histidinol and [4(R)-3H]NADH and between NAD and [4(S)-3H]NADH. The latter reaction proceeded at rates greater than kcat for the net reaction and was about 3-fold faster than the former. Histidine did not support an NAD/NADH exchange, demonstrating kinetic irreversibility in the second half-reaction. Specific activity measurements on [3H]histidinol produced during the histidinol/NADH exchange reaction showed that only a single hydrogen was exchanged between the two reactants, demonstrating that under the conditions employed this exchange reaction arises only from the reversal of the alcohol dehydrogenase step and not the aldehyde dehydrogenase reaction. The kinetics of the NAD/NADH exchange reaction demonstrated a hyperbolic dependence on the concentration of NAD and NADH when the two were present in a 1:2 molar ratio. The histidinol/NADH exchange showed severe inhibition by high NAD and NADH under the same conditions, indicating that histidinol cannot dissociate directly from the ternary enzyme-NAD-histidinol complex; in other words, the binding of substrate is ordered with histidinol leading. Binding studies indicated that [3H]histidinol bound to 1.7 sites on the dimeric enzyme (0.85 site/monomer) with a KD of 10 microM. No binding of [3H]NAD or [3H]NADH was detected. The nucleotides could, however, displace histidinol dehydrogenase from Cibacron Blue-agarose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
L-histidinol dehydrogenase, a Zn2+-metalloenzyme   总被引:3,自引:0,他引:3  
The enzymatic activity of L-histidinol dehydrogenase from Salmonella typhimurium was stimulated by the inclusion of 0.5 mM MnCl2 in the assay medium. At pH 9.2 the stimulation was correlated with binding of 1 g-atom of 54Mn2+/mol dimer, KD = 37 microM. ZnCl2, which prevented the MnCl2 stimulation, also bound to the enzyme, 1.2 g-atom/mol dimer, KD = 51 microM, and prevented Mn2+ binding. Enzyme activity was lost when histidinol dehydrogenase was incubated in 8 M urea. Reactivation was observed when urea-denatured enzyme was diluted into buffer containing 2-mercaptoethanol but required either MnCl2 or ZnCl2. Histidinol dehydrogenase was inactivated by the transition metal chelator 1,10-phenanthroline or by high levels of 2-mercaptoethanol. The nonchelating 1,7-phenanthroline was not an inactivator, and inactivation by either 1,10-phenanthroline or 2-mercaptoethanol was prevented by MnCl2. Enzyme inactivated by 1,10-phenanthroline could be reactivated by addition of MnCl2 or ZnCl2 in the presence of 2-mercaptoethanol. Reactivation was correlated with the binding of 1.5 g-atom 54Mn2+/mol dimer. Atomic absorption analysis of the native enzyme indicated the presence of 1.65 g-atom Zn/mol dimer, and no Mn was detected. The results demonstrate, therefore, that histidinol dehydrogenase contains two metal binding sites per enzyme dimer, which normally bind Zn2+, but which may bind Mn2+ while retaining enzyme function. Histidinol dehydrogenase is thus the third NAD-linked oxidoreductase in which Zn2+ fulfills an essential structural and/or catalytic role.  相似文献   
3.
A partially purified soluble ATPase (ATP phosphohydrolase, EC 3.6.1.3) from pea cotyledon mitochondria was characterized. Inhibition patterns with azide, NaF, and cold, and a stimulation by 2,4-dinitrophenol were typical of F1-ATPases from mammalian mitochondria. The enzyme hydrolysed GTP, ITP, and ATP, but not CTP, UTP, ADP, or IDP. ATPase and ITPase activities were strongly inhibited by ADP and to a lesser extent by IDP. Distinctive properties of the pea mitochondrial enzyme were activation by high concentrations of CaCl2 and stimulation by NaCl.  相似文献   
4.
5.
Submitochondrial particles freshly prepared by sonication from pea cotyledon mitochondria showed low ATPase activity. Activity increased 20-fold on exposure to trypsin. The pea cotyledon submitochondrial particle ATPase was also activated by “aging” in vitro. At pH 7.0 addition of 1 millimolar ATP prevented the activation. ATPase of freshly prepared pea cotyledon submitochondrial particles had a substrate specificity similar to that of the soluble ATPase from pea cotyledon mitochondria, with GTPase > ATPase. “Aged” or trypsin-treated particles showed equal activity with the two substrates. NaCl and NaHCO3, which stimulate the ATPase but not the GTPase activity of the soluble pea enzyme, were stimulatory to both the ATPase and GTPase activities of freshly prepared submitochondrial particles. However, they were stimulatory only to the ATPase activity of trypsin-treated or “aged” submitochondrial particles. In contrast, the ATPase activity of rat liver submitochondrial particles was stimulated by HCO3, but inhibited by Cl, indicating that Cl stimulation is a distinguishing property of the pea mitochondrial ATPase complex.  相似文献   
6.
We investigated the nature of the stimulation by salts of theactivity of a solubilized ATPase from pea cotyledon mitochondria.Our experiments demonstrated that salt stimulations were causedor regulated by anions. Stimulatory anions included oxyanionssuch as bicarbonate, but anions such as chloride and bromidewere also affective, as were anions of organic acids. Sincethe specific polypeptide inhibitor of ATPase was shown to beabsent from our preparation, the stimulations of the enzymeby anions were not caused by destruction or dissociation ofthe inhibitor. In most respects the anion stimulations werevery similar to those reported with F1-ATPases from yeast andmammalian tissues. The lack of oxyanion specificity requiresthat postulated roles for oxyanions be re-examined. (Received May 8, 1978; )  相似文献   
7.
Malaria is a leading cause of worldwide mortality from infectious disease. Plasmodium falciparum proliferation in human erythrocytes requires purine salvage by hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRTase). The enzyme is a target for the development of novel antimalarials. Design and synthesis of transition-state analogue inhibitors permitted cocrystallization with the malarial enzyme and refinement of the complex to 2.0 A resolution. Catalytic site contacts in the malarial enzyme are similar to those of human hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) despite distinct substrate specificity. The crystal structure of malarial HGXPRTase with bound inhibitor, pyrophosphate, and two Mg(2+) ions reveals features unique to the transition-state analogue complex. Substrate-assisted catalysis occurs by ribooxocarbenium stabilization from the O5' lone pair and a pyrophosphate oxygen. A dissociative reaction coordinate path is implicated in which the primary reaction coordinate motion is the ribosyl C1' in motion between relatively immobile purine base and (Mg)(2)-pyrophosphate. Several short hydrogen bonds form in the complex of the enzyme and inhibitor. The proton NMR spectrum of the transition-state analogue complex of malarial HGXPRTase contains two downfield signals at 14.3 and 15.3 ppm. Despite the structural similarity to the human enzyme, the NMR spectra of the complexes reveal differences in hydrogen bonding between the transition-state analogue complexes of the human and malarial HG(X)PRTases. The X-ray crystal structures and NMR spectra reveal chemical and structural features that suggest a strategy for the design of malaria-specific transition-state inhibitors.  相似文献   
8.
The proposed transition state for hypoxanthine-guanine phosphoribosyltransferases (HGPRTs) has been used to design and synthesize powerful inhibitors that contain features of the transition state. The iminoribitols (1S)-1-(9-deazahypoxanthin-9-yl)-1,4-dideoxy-1,4-imino-D-ribitol 5-phosphate (immucillinHP) and (1S)-1-(9-deazaguanin-9-yl)-1,4-dideoxy-1,4-imino-D-ribitol 5-phosphate (immucillinGP) are the most powerful inhibitors yet reported for both human and malarial HGPRTs. Equilibrium binding constants are >1,000-fold tighter than the binding of the nucleotide substrate. The NMR spectrum of malaria HGXPRT in the Michaelis complex reveals downfield hydrogen-bonded protons. The chemical shifts move farther downfield with bound inhibitor. The inhibitors are lead compounds for species-specific antibiotics against parasitic protozoa. The high-resolution crystal structure of human HGPRT with immucillinGP is reported in the companion paper.  相似文献   
9.
The structure of human HGPRT bound to the transition-state analog immucillinGP and Mg2+-pyrophosphate has been determined to 2.0 A resolution. ImmucillinGP was designed as a stable analog with the stereoelectronic features of the transition state. Bound inhibitor at the catalytic site indicates that the oxocarbenium ion of the transition state is stabilized by neighboring-group participation from MgPPi and O5'. A short hydrogen bond forms between Asp 137 and the purine ring analog. Two Mg2+ ions sandwich the pyrophosphate and contact both hydroxyls of the ribosyl analog. The transition-state analog is shielded from bulk solvent by a catalytic loop that moves approximately 25 A to cover the active site and becomes an ordered antiparallel beta-sheet.  相似文献   
10.
The pncB gene of Salmonella typhimurium, encoding nicotinate phosphoribosyltransferase (NAPRTase), was cloned on a 4.7-kb Sau3A fragment. The gene contains a 1,200-bp open reading frame coding for a 400-residue protein. Amino acid sequencing of the amino-terminal and two interior peptides of the purified protein confirmed the deduced sequence and revealed that the amino-terminal methionine residue was removed, giving a 399-residue mature protein of Mr 45,512. No signal sequence was observed in the predicted NAPRTase primary structure, suggesting that the enzyme is not periplasmic. The protein does not demonstrate clear sequence similarity to the other seven phosphoribosyltransferases of known primary structure and frustrates attempts to define a consensus 5-phosphoribosyl-1-pyrophosphate-binding region. The NAPRTase reaction is ATP stimulated, and the protein contains a carboxy-terminal sequence diagnostic of an ATP-binding site. An inverted repeat of the sequence TAAACAA observed in the proposed promoter region of pncB is also present in the promoter of nadA, which, like pncB, is also regulated by the NadR (NadI) repressor. The sequence may thus define an NadR repressor-binding site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号