首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   6篇
  2015年   2篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
Osteoarthritis (OA) is a common joint disease, mainly effecting the elderly population. The cause of OA seems to be an imbalance in catabolic and anabolic factors that develops with age. IL-1 is a catabolic factor known to induce cartilage damage, and transforming growth factor (TGF)-beta is an anabolic factor that can counteract many IL-1-induced effects. In old mice, we observed reduced responsiveness to TGF-beta-induced IL-1 counteraction. We investigated whether expression of TGF-beta and its signaling molecules altered with age. To mimic the TGF-beta deprived conditions in aged mice, we assessed the functional consequence of TGF-beta blocking. We isolated knee joints of mice aged 5 months or 2 years, half of which were exposed to IL-1 by intra-articular injection 24 h prior to knee joint isolation. Immunohistochemistry was performed, staining for TGF-beta1, -2 or -3, TGF-betaRI or -RII, Smad2, -3, -4, -6 and -7 and Smad-2P. The percentage of cells staining positive was determined in tibial cartilage. To mimic the lack of TGF-beta signaling in old mice, young mice were injected with IL-1 and after 2 days Ad-LAP (TGF-beta inhibitor) or a control virus were injected. Proteoglycan (PG) synthesis (35S-sulfate incorporation) and PG content of the cartilage were determined. Our experiments revealed that TGF-beta2 and -3 expression decreased with age, as did the TGF-beta receptors. Although the number of cells positive for the Smad proteins was not altered, the number of cells expressing Smad2P strongly dropped in old mice. IL-1 did not alter the expression patterns. We mimicked the lack of TGF-beta signaling in old mice by TGF-beta inhibition with LAP. This resulted in a reduced level of PG synthesis and aggravation of PG depletion. The limited response of old mice to TGF-beta induced-IL-1 counteraction is not due to a diminished level of intracellular signaling molecules or an upregulation of intracellular inhibitors, but is likely due to an intrinsic absence of sufficient TGF-beta receptor expression. Blocking TGF-beta distorted the natural repair response after IL-1 injection. In conclusion, TGF-beta appears to play an important role in repair of cartilage and a lack of TGF-beta responsiveness in old mice might be at the root of OA development.  相似文献   
2.
Myeloperoxidase, a heme protein expressed by professional phagocytic cells, generates an array of oxidants which are proposed to contribute to tissue damage during inflammation. We now report that enzymatically active myeloperoxidase and its characteristic amino acid oxidation products are present in human brain. Further, expression of myeloperoxidase is increased in brain tissue showing Alzheimer's neuropathology. Consistent with expression in phagocytic cells, myeloperoxidase immunoreactivity was present in some activated microglia in Alzheimer brains. However, the majority of immunoreactive material in brain localized with amyloid plaques and, surprisingly, neurons including granule and pyramidal neurons of the hippocampus. Confirming neuronal localization of the enzyme, several neuronal cell lines as well as primary neuronal cultures expressed myeloperoxidase protein. Myeloperoxidase mRNA was also detected in neuronal cell lines. These results reveal the unexpected presence of myeloperoxidase in neurons. The increase in neuronal myeloperoxidase expression we observed in Alzheimer disease brains raises the possibility that the enzyme contributes to the oxidative stress implicated in the pathogenesis of the neurodegenerative disorder.  相似文献   
3.
4.
5.
Presenilin 1 protein directly interacts with Bcl-2.   总被引:7,自引:0,他引:7  
Presenilin proteins are involved in familial Alzheimer's disease, a neurodegenerative disorder characterized by massive death of neurons. We describe a direct interaction between presenilin 1 (PS1) and Bcl-2, a key factor in the regulation of apoptosis, by yeast two-hybrid interaction system, by co-immunoprecipitation, and by cross-linking experiments. Our data show that PS1 and Bcl-2 assemble into a macromolecular complex, and that they are released from this complex in response to an apoptotic stimulus induced by staurosporine. The results support the idea of cross-talk between these two proteins during apoptosis.  相似文献   
6.
Abstract: To examine the effects of glutamatergic neurotransmission on amyloid processing, we stably expressed the metabotropic glutamate receptor subtype 1α (mGluR1α) in HEK 293 cells. Both glutamate and the selective metabotropic agonist 1-amino-1,3-cyclopentanedicarboxylic acid (ACPD) rapidly increased phosphatidylinositol (PI) turnover four- to fivefold compared with control cells that were transfected with the expression vector alone. Increased PI turnover was effectively blocked by the metabotropic antagonist α-methyl-4-carbophenylglycine (MCPG), indicating that heterologous expression of mGluR1α resulted in efficient coupling of the receptors to G protein and phospholipase C activation. Stimulation of mGluR1α with glutamate, quisqualate, or ACPD rapidly increased secretion of the APP ectodomain (APPs); these effects were blocked by MCPG. The metabotropic receptors were coupled to APP processing by protein kinases and by phospholipase A2 (PLA2), and melittin, a peptide that stimulates PLA2, potently increased APPs secretion. These data indicate that mGluR1α can be involved in the regulation of APP processing. Together with previous findings that muscarinic and serotonergic receptor subtypes can increase the secretion of the APP ectodomain, these observations support the concept that proteolytic processing of APP is under the control of several major neurotransmitters.  相似文献   
7.
8.
In an attempt to resolve the relative influences of major genes, multifactorial heritability, and cohort effects on the susceptibility to Alzheimer disease (AD), complex segregation analysis was performed on 232 nuclear families. All families were consecutively ascertained through a single proband who was referred for diagnostic evaluation of a memory disorder. The results suggest that susceptibility to AD is determined, in part, by a major autosomal dominant allele with an additional multifactorial component. Single-locus, polygenic, sporadic, and no-transmission models, as well as recessive inheritance of the major effect, were significantly rejected. Excess transmission from the heterozygote was marginally significant and probably reflects the presence of phenocopies or perhaps the existence of two or more major loci for AD. The frequency of the AD susceptibility allele was estimated to be .038, but the major locus accounts for only 24% of the transmission variance, indicating a substantial role for other genetic and nongenetic mechanisms in the causation of AD.  相似文献   
9.
Parkinson disease (PD) is a late-onset neurodegenerative disorder. The mean age at onset is 61 years, but the disease can range from juvenile cases to cases in the 8th or 9th decade of life. The parkin gene on chromosome 6q and loci on chromosome 1p35-36 and 1p36 are responsible for some cases of autosomal recessive early-onset parkinsonism, but they do not appear to influence susceptibility or variability of age at onset for idiopathic PD. We have performed a genomewide linkage analysis using variance-component methodology to identify genes influencing age at onset of PD in a population of affected relatives (mainly affected sibling pairs) participating in the GenePD study. Four chromosomal loci showed suggestive evidence of linkage: chromosome 2p (maximum multipoint LOD [MaxLOD] = 2.08), chromosome 9q (MaxLOD = 2.00), chromosome 20 (MaxLOD = 1.82), and chromosome 21 (MaxLOD = 2.21). The 2p and 9q locations that we report here have previously been reported as loci influencing PD affection status. Association between PD age at onset and allele 174 of marker D2S1394, located on 2p13, was observed in the GenePD sample (P=.02). This 174 allele is common to the PD haplotype observed in two families that show linkage to PARK3 and have autosomal dominant PD, which suggests that this allele may be in linkage disequilibrium with a mutation influencing PD susceptibility or age at onset of PD.  相似文献   
10.
The amyloid protein precursor (APP) can be processed via several alternative processing pathways, -secretase processing by cleavage within the amyloid -peptide domain of APP is highly regulated by several external and internal signals including G protein-coupled receptors, protein kinase C and phospholipase A2. In order to demonstrate that G protein-coupled neuropeptide receptors for bradykinin and vasopressin can increase -secretase processing of APP, we stimulated endogenously expressed bradykinin or vasopressin receptors in cell culture with the neuropeptides and measured the secreted ectodomain (APPs) in the conditioned media. Both bradykinin and vasopressin rapidly increased phosphatidylinositol (PI) turnover in PC-12 and in NRK-49F cells, indicating that these cell lines constitutively expressed functional PI-linked receptors for these neuropeptides. Both bradykinin and vasopressin readily stimulated APPs secretion. Increased APPs secretion was concentration-dependent and saturable, and it was blocked by receptor antagonists indicating specific receptor interaction of the peptides. The bradykinin-induced increase in APPs secretion in PC-12 cells was mediated by protein kinase C (PKC), whereas vasopressin receptors in NRK-49F cells were coupled to APP processing by PKC-independent signalling pathways. Our data show that neuropeptides can modulate APP processing in cell culture. In as much as increased -secretase processing is associated with decreased formation of A1–40, a major constituent of amyloid plaques, our findings suggest a possible role for modulating neuropeptide receptors as a strategy for altering amyloid metabolism in Alzheimer's disease brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号