排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
2.
Yang S Hodge JW Grosenbach DW Schlom J 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(6):3715-3723
The avidity of Ag-specific CTL is a critical determinant for clearing viral infection and eliminating tumor. Although previous studies have demonstrated that vaccines using enhanced costimulation will enhance the level and avidity of Ag-specific T cells from naive mice, there are conflicting data about the effects of vaccines using enhanced costimulation (vector or dendritic cell based) on the survival of memory T cells. In this study we have first extended previous observations that primary vaccination with a recombinant vaccinia virus (rV-) expressing a model Ag (LacZ) and a triad of T cell costimulatory molecules (B7-1, ICAM-1, and LFA-3 (designated TRICOM)) enhances the level and avidity of T cells from naive vaccinated C57BL/6 (Thy1.2) mice. Adoptive transfer of Thy1.1 memory CD8(+) T cells into naive Thy1.2 C57BL/6 mice was followed by booster vaccinations with a recombinant fowlpox (rF-)-expressing LacZ (rF-LacZ) or booster vaccinations with rF-LacZ/TRICOM. Analysis of levels of beta-galactosidase tetramer-positive T cells and functional assays (IFN-gamma expression and lytic activity) determined that booster vaccinations with rF-LacZ/TRICOM were superior to booster vaccinations with rF-LacZ in terms of both maintenance and enhanced avidity of memory CD8(+) T cells. Antitumor experiments using a self-Ag (carcinoembryonic Ag (CEA) vaccines in CEA transgenic mice bearing CEA-expressing tumors) also demonstrated that the use of booster vaccinations with vaccines bearing enhanced costimulatory capacity had superior antitumor effects. These studies thus have implications in the design of more effective vaccine strategies. 相似文献
3.
Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion 总被引:4,自引:0,他引:4
D. D. Rockey D. Grosenbach D. E. Hruby M. G. Peacock R. A. Heinzen & T. Hackstadt 《Molecular microbiology》1997,24(1):217-228
Chlamydiae are obligate intracellular bacteria that replicate within a non-acidified vacuole called an inclusion. Chlamydia psittaci (strain GPIC) produces a 39 kDa protein (IncA) that is localized to the inclusion membrane. While IncA is present as a single 39 kDa species in purified reticulate bodies, two additional higher M r forms are found in C. psittaci -infected cells. This finding suggested that IncA may be post-translationally modified in the host cell. Here we present evidence that IncA is a serine/threonine phosphoprotein that is phosphorylated by host cell enzymes. This conclusion is supported by the following experimental findings: (i) treatment of infected cells with inhibitors of host cell phosphatases or kinases altered the electrophoretic migration pattern of IncA; (ii) treatment with calf intestinal alkaline phosphatase eliminated the multiple-banding pattern of IncA, leaving only the protein band with the lowest relative molecular weight; and (iii) radioimmunoprecipitation of lysates of [32 P]-orthophosphate-labelled infected HeLa cells with anti-IncA antisera demonstrated that the two highest M r IncA bands were phosphorylated. A vaccinia-virus recombinant expressing incA was used to determine if HeLa cells can phosphorylate IncA in the absence of a chlamydial background. IncA in lysates of these cells migrated identically to that seen in C. psittaci -infected cells, indicating the host cell was responsible for the phosphorylation of the protein. Microinjection of fluorescently labelled anti-IncA antibodies into C. psittaci -infected HeLa cells resulted in immunostaining of the outer face of the inclusion membrane. Collectively, these results demonstrate that IncA is phosphorylated by the host cell, and regions of IncA are exposed at the cytoplasmic face of the inclusion. 相似文献
4.
Paul DW Kirk Aviva Witkover Alan Courtney Alexandra M Lewin Robin Wait Michael PH Stumpf Sylvia Richardson Graham P Taylor Charles RM Bangham 《Retrovirology》2011,8(1):1-9
Background
A new subgroup of HIV-1, designated Group P, was recently detected in two unrelated patients of Cameroonian origin. HIV-1 Group P phylogenetically clusters with SIVgor suggesting that it is the result of a cross-species transmission from gorillas. Until today, HIV-1 Group P has only been detected in two patients, and its degree of adaptation to the human host is largely unknown. Previous data have shown that pandemic HIV-1 Group M, but not non-pandemic Group O or rare Group N viruses, efficiently antagonize the human orthologue of the restriction factor tetherin (BST-2, HM1.24, CD317) suggesting that primate lentiviruses may have to gain anti-tetherin activity for efficient spread in the human population. Thus far, three SIV/HIV gene products (vpu, nef and env) are known to have the potential to counteract primate tetherin proteins, often in a species-specific manner. Here, we examined how long Group P may have been circulating in humans and determined its capability to antagonize human tetherin as an indicator of adaptation to humans.Results
Our data suggest that HIV-1 Group P entered the human population between 1845 and 1989. Vpu, Env and Nef proteins from both Group P viruses failed to counteract human or gorilla tetherin to promote efficient release of HIV-1 virions, although both Group P Nef proteins moderately downmodulated gorilla tetherin from the cell surface. Notably, Vpu, Env and Nef alleles from the two HIV-1 P strains were all able to reduce CD4 cell surface expression.Conclusions
Our analyses of the two reported HIV-1 Group P viruses suggest that zoonosis occurred in the last 170 years and further support that pandemic HIV-1 Group M strains are better adapted to humans than non-pandemic or rare Group O, N and P viruses. The inability to antagonize human tetherin may potentially explain the limited spread of HIV-1 Group P in the human population. 相似文献5.
Current status of antisense DNA methods in behavioral studies 总被引:4,自引:0,他引:4
The antisense DNA method has been used successfully to block the expression
of specific genes in vivo in neuronal systems. An increasing number of
studies in the last few years have shown that antisense DNA administered
directly into the brain can modify various kinds of behaviors. These
findings strongly suggest that the antisense DNA method can be used as a
powerful tool to study causal relationships between molecular processes in
the brain and behavior. In this article we review the current status of the
antisense method in behavioral studies and discuss its potentials and
problems by focusing on the following four aspects; (i) optimal application
paradigms of antisense DNA methods in behavioral studies; (ii) efficiencies
of different administration methods of antisense DNA used in behavioral
studies; (iii) determination of specificity of behavioral effects of
antisense DNA; and (iv) discrepancies between antisense DNA effects on
behaviors and those on protein levels of the targeted gene.
相似文献
6.
7.
L-Lactate dehydrogenase (L-LDH, E.C. 1.1.1.27) is encoded by two or three
loci in all vertebrates examined, with the exception of lampreys, which
have a single LDH locus. Biochemical characterizations of LDH proteins have
suggested that a gene duplication early in vertebrate evolution gave rise
to Ldh-A and Ldh-B and that an additional locus, Ldh-C arose in a number of
lineages more recently. Although some phylogenetic studies of LDH protein
sequences have supported this pattern of gene duplication, others have
contradicted it. In particular, a number of studies have suggested that
Ldh-C represents the earliest divergence among vertebrate LDHs and that it
may have diverged from the other loci well before the origin of
vertebrates. Such hypotheses make explicit statements about the
relationship of vertebrate and invertebrate LDHs, but to date, no closely
related invertebrate LDH sequences have been available for comparison. We
have attempted to provide further data on the timing of gene duplications
leading to multiple vertebrate LDHs by determining the cDNA sequence of the
LDH of the tunicate Styela plicata. Phylogenetic analyses of this and other
LDH sequences provide strong support for the duplications giving rise to
multiple vertebrate LDHs having occurred after vertebrates diverged from
tunicates. The timing of these LDH duplications is consistent with data
from a number of other gene families suggesting widespread gene duplication
near the origin of vertebrates. With respect to the relationships among
vertebrate LDHs, our data are not consistent with previous claims that
Ldh-C represented the earliest divergence. However, the precise
relationships among some of the main lineages of vertebrate LDHs were not
resolved in our analyses.
相似文献
8.
Berhanu A Wilson RL Kirkwood-Watts DL King DS Warren TK Lund SA Brown LL Krupkin AK Vandermay E Weimers W Honeychurch KM Grosenbach DW Jones KF Hruby DE 《Journal of virology》2008,82(7):3517-3529
The potential threat of smallpox use in a bioterrorist attack has heightened the need to develop an effective smallpox vaccine for immunization of the general public. Vaccination with the current smallpox vaccine, Dryvax, produces protective immunity but may result in adverse reactions for some vaccinees. A subunit vaccine composed of protective vaccinia virus proteins should avoid the complications arising from live-virus vaccination and thus provide a safer alternative smallpox vaccine. In this study, we assessed the protective efficacy and immunogenicity of a multisubunit vaccine composed of the A27L and D8L proteins from the intracellular mature virus (IMV) form and the B5R protein from the extracellular enveloped virus (EEV) form of vaccinia virus. BALB/c mice were immunized with Escherichia coli-produced A27L, D8L, and B5R proteins in an adjuvant consisting of monophosphoryl lipid A and trehalose dicorynomycolate or in TiterMax Gold adjuvant. Following immunization, mice were either sacrificed for analysis of immune responses or lethally challenged by intranasal inoculation with vaccinia virus strain Western Reserve. We observed that three immunizations either with A27L, D8L, and B5R or with the A27L and B5R proteins alone induced potent neutralizing antibody responses and provided complete protection against lethal vaccinia virus challenge. Several linear B-cell epitopes within the three proteins were recognized by sera from the immunized mice. In addition, protein-specific cellular responses were detected in spleens of immunized mice by a gamma interferon enzyme-linked immunospot assay using peptides derived from each protein. Our data suggest that a subunit vaccine incorporating bacterially expressed IMV- and EEV-specific proteins can be effective in stimulating anti-vaccinia virus immune responses and providing protection against lethal virus challenge. 相似文献
9.
A Dickinson K Y Yeung J Donoghue M J Baker R DW Kelly M McKenzie T G Johns J C St. John 《Cell death and differentiation》2013,20(12):1644-1653
As stem cells undergo differentiation, mitochondrial DNA (mtDNA) copy number is strictly regulated in order that specialized cells can generate appropriate levels of adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS) to undertake their specific functions. It is not understood whether tumor-initiating cells regulate their mtDNA in a similar manner or whether mtDNA is essential for tumorigenesis. We show that human neural stem cells (hNSCs) increased their mtDNA content during differentiation in a process that was mediated by a synergistic relationship between the nuclear and mitochondrial genomes and results in increased respiratory capacity. Differentiating multipotent glioblastoma cells failed to match the expansion in mtDNA copy number, patterns of gene expression and increased respiratory capacity observed in hNSCs. Partial depletion of glioblastoma cell mtDNA rescued mtDNA replication events and enhanced cell differentiation. However, prolonged depletion resulted in impaired mtDNA replication, reduced proliferation and induced the expression of early developmental and pro-survival markers including POU class 5 homeobox 1 (OCT4) and sonic hedgehog (SHH). The transfer of glioblastoma cells depleted to varying degrees of their mtDNA content into immunocompromised mice resulted in tumors requiring significantly longer to form compared with non-depleted cells. The number of tumors formed and the time to tumor formation was relative to the degree of mtDNA depletion. The tumors derived from mtDNA depleted glioblastoma cells recovered their mtDNA copy number as part of the tumor formation process. These outcomes demonstrate the importance of mtDNA to the initiation and maintenance of tumorigenesis in glioblastoma multiforme. 相似文献
10.