首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   18篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   8篇
  2015年   10篇
  2014年   11篇
  2013年   8篇
  2012年   12篇
  2011年   10篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2007年   9篇
  2006年   9篇
  2005年   9篇
  2004年   8篇
  2003年   13篇
  2002年   7篇
  2001年   8篇
  2000年   9篇
  1999年   7篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
排序方式: 共有209条查询结果,搜索用时 15 毫秒
1.
2.
Use of chicken microsatellite markers in turkey: a pessimistic view   总被引:3,自引:0,他引:3  
Eighty-eight chicken microsatellite markers, previously developed in our laboratory, were tested for their ability to amplify polymorphic fragments using turkey genomic DNA. Amplification products were obtained for 61 chicken microsatellite markers (69.1%) whereas 27 (30.9%) did not give rise to any products, even when different polymerase chain reaction conditions were employed. From the 61 markers that gave a product, only eight showed a length polymorphism while 37 were monomorphic on the three divergent commercial turkey lines used. The remaining 16 markers yielded many unspecific bands and no specific amplification product could be obtained. Five polymorphic and eleven monomorphic products contained a detectable microsatellite repeat. Furthermore, of the markers that detected a polymorphism in turkey, the observed heterozygosity (15–50%) and allelic variation (only 2 in most cases) was very low. Therefore, on the basis of our results, we think that chicken microsatellite markers are not very useful for mapping purposes in turkey.  相似文献   
3.
A. L. Archibald  C. S. Haley  J. F. Brown  S. Couperwhite  H. A. McQueen  D. Nicholson  W. Coppieters  A. Van de Weghe  A. Stratil  A. K. Winterø  M. Fredholm  N. J. Larsen  V. H. Nielsen  D. Milan  N. Woloszyn  A. Robic  M. Dalens  J. Riquet  J. Gellin  J. -C. Caritez  G. Burgaud  L. Ollivier  J. -P. Bidanel  M. Vaiman  C. Renard  H. Geldermann  R. Davoli  D. Ruyter  E. J. M. Verstege  M. A. M. Groenen  W. Davies  B. Høyheim  A. Keiserud  L. Andersson  H. Ellegren  M. Johansson  L. Marklund  J. R. Miller  D. V. Anderson Dear  E. Signer  A. J. Jeffreys  C. Moran  P. Le Tissier  Muladno  M. F. Rothschild  C. K. Tuggle  D. Vaske  J. Helm  H. -C. Liu  A. Rahman  T. -P. Yu  R. G. Larson  C. B. Schmitz 《Mammalian genome》1995,6(3):157-175
A linkage map of the porcine genome has been developed by segregation analysis of 239 genetic markers. Eighty-one of these markers correspond to known genes. Linkage groups have been assigned to all 18 autosomes plus the X Chromosome (Chr). As 69 of the markers on the linkage map have also been mapped physically (by others), there is significant integration of linkage and physical map data. Six informative markers failed to show linkage to these maps. As in other species, the genetic map of the heterogametic sex (male) was significantly shorter (16.5 Morgans) than the genetic map of the homogametic sex (female) (21.5 Morgans). The sex-averaged genetic map of the pig was estimated to be 18 Morgans in length. Mapping information for 61 Type I loci (genes) enhances the contribution of the pig gene map to comparative gene mapping. Because the linkage map incorporates both highly polymorphic Type II loci, predominantly microsatellites, and Type I loci, it will be useful both for large experiments to map quantitative trait loci and for the subsequent isolation of trait genes following a comparative and candidate gene approach.  相似文献   
4.
A hexapeptide, corresponding to the sequence around the glutamine in beta A3-crystallin that functions as amine-acceptor for transglutaminase, was synthesized. This peptide was biotinylated and used as a probe to identify amine-donor substrates for transglutaminase among lens proteins. It was found that Ca(2+)-activated transglutaminase linked this peptide not only to several beta-crystallins but, unexpectedly, also to alpha B-crystallin. The C-terminal lysine residue of alpha B-crystalline could be identified as the site of linkage. This strengthens the notion that, at least in crystallins, all transglutaminase substrate residues are located in terminal extensions of the polypeptides. It was shown that in lens homogenate, alpha B-crystallin can be covalently crosslinked to beta-crystallins by transglutaminase. The transglutaminase-mediated crosslinking of alpha B-crystallin may have implications for its involvement in normal and pathological processes in lens and other tissues.  相似文献   
5.
Following domestication, livestock breeds have experienced intense selection pressures for the development of desirable traits. This has resulted in a large diversity of breeds that display variation in many phenotypic traits, such as coat colour, muscle composition, early maturity, growth rate, body size, reproduction, and behaviour. To better understand the relationship between genomic composition and phenotypic diversity arising from breed development, the genomes of 13 traditional and commercial European pig breeds were scanned for signatures of diversifying selection using the Porcine60K SNP chip, applying a between-population (differentiation) approach. Signatures of diversifying selection between breeds were found in genomic regions associated with traits related to breed standard criteria, such as coat colour and ear morphology. Amino acid differences in the EDNRB gene appear to be associated with one of these signatures, and variation in the KITLG gene may be associated with another. Other selection signals were found in genomic regions including QTLs and genes associated with production traits such as reproduction, growth, and fat deposition. Some selection signatures were associated with regions showing evidence of introgression from Asian breeds. When the European breeds were compared with wild boar, genomic regions with high levels of differentiation harboured genes related to bone formation, growth, and fat deposition.  相似文献   
6.
We tested the utility of genetic cluster analysis in ascertaining population structure of a large data set for which population structure was previously known. Each of 600 individuals representing 20 distinct chicken breeds was genotyped for 27 microsatellite loci, and individual multilocus genotypes were used to infer genetic clusters. Individuals from each breed were inferred to belong mostly to the same cluster. The clustering success rate, measuring the fraction of individuals that were properly inferred to belong to their correct breeds, was consistently approximately 98%. When markers of highest expected heterozygosity were used, genotypes that included at least 8-10 highly variable markers from among the 27 markers genotyped also achieved >95% clustering success. When 12-15 highly variable markers and only 15-20 of the 30 individuals per breed were used, clustering success was at least 90%. We suggest that in species for which population structure is of interest, databases of multilocus genotypes at highly variable markers should be compiled. These genotypes could then be used as training samples for genetic cluster analysis and to facilitate assignments of individuals of unknown origin to populations. The clustering algorithm has potential applications in defining the within-species genetic units that are useful in problems of conservation.  相似文献   
7.
The mapping resolution of the physical map for chicken Chromosome 4 (GGA4) was improved by a combination of radiation hybrid (RH) mapping and bacterial artificial chromosome (BAC) mapping. The ChickRH6 hybrid panel was used to construct an RH map of GGA4. Eleven microsatellites known to be located on GGA4 were included as anchors to the genetic linkage map for this chromosome. Based on the known conserved synteny between GGA4 and human Chromosomes 4 and X, sequences were identified for the orthologous chicken genes from these human chromosomes by BLAST analysis. These sequences were subsequently used for the development of STS markers to be typed on the RH panel. Using a logarithm of the odds (LOD) threshold of 5.0, nine linkage groups could be constructed which were aligned with the genetic linkage map of this chromosome. The resulting RH map consisted of the 11 microsatellite markers and 50 genes. To further increase the number of genes on the map and to provide additional anchor points for the physical BAC map of this chromosome, BAC clones were identified for 22 microsatellites and 99 genes. The combined RH and BAC mapping approach resulted in the mapping of 61 genes on GGA4 increasing the resolution of the chicken–human comparative map for this chromosome. This enhanced comparative mapping resolution enabled the identification of multiple rearrangements between GGA4 and human Chromosomes 4q and Xp.  相似文献   
8.
Development of a single nucleotide polymorphism map of porcine chromosome 2   总被引:1,自引:0,他引:1  
Single nucleotide polymorphism markers are developed on SSC2, predominantly on the p-arm. Several studies reported a quantitative trait loci (QTL) for backfat thickness in this region. Single nucleotide polymorphisms were identified by comparative re-sequencing of polymerase chain reaction (PCR) products from a panel of eight individuals. The panel consisted of five Large Whites (each from a different Dutch breeding company), a Meishan, a Pietrain and a Wild Boar. In total, 67 different PCR products were sequenced and 301 SNPs were identified in 32,429 bp of consensus sequence, an average of one SNP in every 108 bp. After correction for sample size, this polymorphism rate corresponds to a heterozygosity value of one SNP in every 357 bp. For 63% of the SNPs, there was variation among the five Large Whites, and these SNPs are relevant for linkage and association studies in commercial populations. Comparing the Whites with other breeds revealed higher variation rates with: (i) Meishan, 89%; (ii) Pietrain, 69%; (iii) Wild Boar, 70%. Because many of the experimental populations to identify QTL are based on crosses between these breeds, these SNPs are relevant for the fine mapping of the QTL identified within these crosses.  相似文献   
9.
Genetic variability was analysed in two common breeds of pheasant (Phasianus colchicus L. 1758) by means of cross-species amplifications of microsatellite loci: 154 chicken, Gallus gallus and 32 turkey, Meleagris gallopavo, primers were tested for amplification of pheasant DNA. Thirty-six primers (25 specific for chicken and 11 for turkey) amplified pheasant DNA. Fifteen markers yielded specific products and were tested for polymorphism. Eight of them (55%) were polymorphic, with an average polymorphism of two alleles per locus. Specific polymerase chain reaction (PCR) products were sequenced; repeats were found in 11 of the 15 markers, although only two loci showed the same repeat and could be homologous to chicken ones.  相似文献   
10.
Marek''s disease (MD) is a lymphoproliferative disease caused by the MD virus (MDV), which costs the poultry industry nearly $1 billion annually. To identify quantitative trait loci (QTL) affecting MD susceptibility, the inbred lines 6(3) (MD resistant) and 7(2) (MD susceptible) were mated to create more than 300 F2 chickens. The F2 chickens were challenged with MDV JM strain, moderately virulent) at 1 wk of age and assessed for MD susceptibility. The QTL analysis was divided into three stages. In stage 1, 65 DNA markers selected from the chicken genetic maps were typed on the 40 most MD-susceptible and the 40 most MD-resistant F2 chickens, and 21 markers residing near suggestive QTL were revealed by analysis of variance (ANOVA). In stage 2, the suggestive markers plus available flanking markers were typed on 272 F2 chickens, and three suggestive QTL were identified by ANOVA. In stage 3, using the interval mapping program Map Manager and permutation tests, two significant and two suggestive MD QTL were identified on four chromosomal subregions. Three to five loci collected explained between 11 and 23% of the phenotypic MD variation, or 32-68% of the genetic variance. This study constitutes the first report in the domestic chicken on the mapping of non-major histocompatibility complex QTL affecting MD susceptibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号