首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  2020年   1篇
  2017年   1篇
  2013年   1篇
  2010年   1篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2003年   1篇
  2002年   7篇
  2000年   2篇
  1990年   2篇
排序方式: 共有24条查询结果,搜索用时 250 毫秒
1.
Meiotic and mitotic chromosomes have a complex of differences. (1) At the early prophase I of meiosis, chromosomes acquire protein axial elements (AEs) that were absent in mitosis; in addition to somatic cohesins, AEs contain the meiosis-specific cohesins REC8, SMC1β, and STAG3. (2) At the middle prophase I, protein lateral elements (LEs) of synaptonemal complexes (SCs) are formed on the basis of AEs. The LE proteins are not conserved, but in Saccharomyces cerevisiae and Arabidopsis thaliana they contain functional domains with conserved secondary structures. Among the almost 679 thousand proteins of primitive eukaryotes that we studied by bioinformatics methods, in green and brown algae, some lower fungi, and Coelenterata, we revealed proteins or functional domains similar to SC proteins. (3) During the pachytene and diplotene stages of meiosis, chromosomes of spermatocytes and mother pollen cells acquire a general structure resembling the structure of amphibian and avian lampbrush chromosomes in miniature. Lateral chromatin loops with sizes of 90, 160, and even over 480 Kb were observed in human spermatocytes during the diplotene stage. In combination, all these observations confirm the considerable conservation of the scheme of molecular and ultrastructural organization of meiotic chromosomes in a large variety of eukaryotic organisms.  相似文献   
2.
A method of in silico search for specific repetitive DNA sequences related to the synaptonemal complex (meiDNA) in mammalian genomes was developed. A study of the distribution of these repeats over chromosomes revealed their scarcity on the Y chromosome and a decrease in recombination frequency in regions enriched in meiDNA. The results are discussed in context of the model of the looplike meiotic chromosome organization during the formation of the synaptonemal complex.__________Translated from Genetika, Vol. 41, No. 5, 2005, pp. 697–701.Original Russian Text Copyright © 2005 by Grishaeva, Dadashev, Bogdanov.  相似文献   
3.
Earlier, using bioinformatic methods, we reported the identification of repeated DNA sequences (RS), presumably responsible for the attachment of chromatin loops to the lateral elements of synaptonemal complex in meiotic chromosomes. In the present study, consensus sequences for this class of RS were identified. It was demonstrated that at least part of these sequences belonged to the AluJb subfamily of Alu sequences. The Alu copies distribution along the major human histocompatibility complex (MHC) and their spatial separation from the sites of meiotic recombination was examined. It was demonstrated that simple sequences, like (GC/CA)n, were flanking meiotic recombination sites. A model of the RS organization in meiotic chromosome, most efficiently linking experimental data on the meiotic recombination in MHC and the in silico data on the RS localization (the coefficient of multiple correlation, r = 0.92) is suggested.  相似文献   
4.
5.
From data on the molecular organization of transverse filament proteins of the synaptonemal complex (SC)—Zip1 in yeast and SCP1 in mammals—and on the width of the SC central space in these organisms and in Drosophila, the putative molecular structure and size of a transverse filament protein of the SC in Drosophila has been inferred. Using genetic and molecular databases and software from the Internet, we carried out in silico screening for a candidate gene for the Drosophila transverse filament protein. As a most likely candidate, gene c(3)G was chosen. The search in the 250-kb region overlapping the locus of this gene (sections 88E-89B) and containing 78 predicted genes has revealed only one gene,CG17604, whose protein meets all requirements for the transverse filament protein of the SC. It was suggested that gene CG17604is gene c(3)G. In this case, genec(3)G must be localized in section 89A7-8 of the cytological map of Drosophila melanogaster.  相似文献   
6.
The published principles of computer analysis of genomes and protein sets in taxonomically distant eukaryotes are expounded. The authors developed a search strategy to identify in genomes of such organisms genes and proteins nonhomologous in primary structure but having similar functions in cells dividing by meiosis. This strategy based on the combined principles of genomics, proteomics, and morphometric analysis of subcellular structures was applied to a computer search for genes encoding the proteins of synaptonemal complexes in genomes of Drosophila melanogaster, the nematode Caenorhabditis elegans, and the plant Arabidopsis thaliana. These proteins proved to be functionally similar to their counterparts in yeast Saccharomyces cerevisiae (protein Zip1p) and mammals (protein SCP1).  相似文献   
7.
A comparison of amino acid sequences is performed for orthologs to the meiosis-specific proteins in humans and seven other species, including animals, fungi, and plants that serve as models for the study of molecular mechanisms of meiosis. It is demonstrated that the RAD51 recombination mediator protein is the most conserved of the studied proteins. Its meiotic homolog DMC1 is less conserved, like the MHL1 mismatch-repair protein. The meiosis-specific SPO11 endonuclease is the least conserved among the studied meiotic enzymes. Structural proteins of meiotic chromosomes are poorly conserved. REC8 meiotic cohesin has 6 times lower similarity in the organisms from different kingdoms than its somatic homolog RAD21. The intermediate conservation level is characteristic of the synaptonemal complex proteins containing HORMA domain. Two functional domains of SPO11 endonuclease and MutL Trans_MLH1 domain of MLH1 enzyme are equally or even less conserved than the whole proteins. HORMA functional domain of a number of synaptonemal complex proteins is only 2–3 times more conserved than the whole molecule. Thus, among the key meiotic proteins, the most conserved are proteins responsible for the accuracy of meiotic recombination. Cohesins, synaptonemal complex proteins, and meiosis-specific SPO11 endonuclease are less conserved even within their functional domains. Obviously, the meiosis-specific proteins have undergone independent evolution in different phylogenetic lineages of eukaryotes.  相似文献   
8.
From data on the molecular organization of transverse filament proteins of the synaptonemal complex (SC)--Zip1 in yeast and SCP1 in mammals--and on the width of the central SC space in these organisms and in Drosophila, the putative molecular structure and size of a transverse filament protein of the SC in Drosophila has been inferred. Using genetic and molecular databases and software from the Internet, we carried out in silico screening for a candidate gene for the Drosophila transverse filament protein. The search in the 250-bp region overlapping the locus of this gene (sections 88E-89B) and containing 78 predicted genes has revealed only one gene, CG17604, whose protein meets all requirements for the transverse filament protein of the SC. It was suggested that gene CG17604 is gene c(3)G. In this case, gene c(3)G must be localized in section 89A7-8 of the cytological map of Drosophila melanogaster.  相似文献   
9.
The published principles of computer analysis of genomes and protein sets in taxonomically distant eukaryotes are expounded. The authors developed a search strategy to identify in genomes of such organisms genes and proteins nonhomologous in primary structure but having similar functions in cells dividing by meiosis. This strategy based on the combined principles of genomics, proteomics, and morphometric analysis of subcellular structures was applied to a computer search for genes encoding the proteins of synaptonemal complexes in genomes of Drosophila melanogaster, the nematode Caenorhabditis elegans, and the plant Arabidopsis thaliana. These proteins proved to be functionally similar to their counterparts in yeast Saccharomyces cerevisiae (protein Zip1p) and mammals (protein SCP1).  相似文献   
10.
The mutagenic effect of low-dose gamma-irradiation was studied inDrosophila melanogaster systems of hybrid dysgenesis by estimating polytene chromosome rearrangements, recombination frequency, and viability at the embryonic and postembryonic developmental stages. A dose of gamma-irradiation which had no effect detectable by routine interstrain cross proved to significantly reduce the number of recombinants in the H–E and P–M systems and mortality at postembryonic stages. However, this combined effect was obtained if irradiation followed trasposition, i.e., it depended on the application sequence of the mutagenic factors. The reverse order of the mutagenic treatment led to summation of the effects: as compared to either control, the frequencies of the dominant lethal mutations as well as the larval and pupal mortality in F2 increased significantly (at the level of 99.9%). This allowed us to estimate the contribution of extremely low-dose gamma-irradiation into the mutagenic effect, which was impossible under routine conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号