首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   3篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1997年   3篇
  1983年   1篇
  1975年   1篇
  1929年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
2.
3.
4.
Alveolar echinococcosis is caused by the metacestode stage of the fox tapeworm Echinococcus multilocularis. Current chemotherapeutical options for the treatment of echinococcosis are not satisfactory, and novel drugs and/or other potential means of therapy are needed. E. multilocularis metacestodes are characterized by almost potentially unlimited growth, and also display other features of cancerous tumours. In this study, we exposed metacestodes that were generated in vitro to 50–100 Gy ionizing irradiation, and subsequently investigated the short-term (10–12 days post-treatment) and long-term (14 weeks post-treatment) effects. We found, that in the short-term, no release of alkaline phosphatase (EmAP) activity as a measure for potentially induced damage and loss of viability could be detected, and that the protein expression pattern and protease activities in vesicle fluids and medium supernatants did not alter dramatically following irradiation. However, irradiation was associated with distinct morphological and ultrastructural alterations in the tissue of metacestodes, affecting most notably cell–cell contacts, mitochondrial shape, glycogen-storage cells and lipid droplet formation. These could be detected already at 10 days following treatment and remained as such also in the long-term. In addition, as determined after 14 weeks of culture, irradiation affected the proliferation and the growth of E. multilocularis metacestodes. Thus, we demonstrate that radiotherapy does not have a clear-cut parasitocidal effect, but can lead to metabolic impairment of E. multilocularis metacestodes, as reflected by the distinct morphological and structural alterations induced by irradiation treatment.  相似文献   
5.
The flexibility and self-healing properties of animal cell surface membranes are well known. These properties have been best exploited in various micrurgical studies on living cells (2, 3), especially in amoebae (7, 20). During nuclear transplantation in amoebae, the hole in the membrane through which a nucleus passes can have a diameter of 20-30 μm, and yet such holes are quickly sealed, although some cytoplasm usually escapes during the transfer. While enucleating amoebae in previous studies, we found that if a very small portion of a nucleus was pushed through the membrane and exposed to the external medium, the amoeba expelled such a nucleus on its own accord. When this happened, a new membrane appeared to form around the embedded portion of the nucleus and no visible loss of cytoplasm occurred during nuclear extrusion. In the present study, we examined amoebae that were at different stages of expelling partially exposed nuclei, to follow the sequence of events during the apparent new membrane formation. Unexpectedly, we found that a new membrane is not formed around the nucleus from inside but a hole is sealed primarily by a constriction of the existing membrane, and that cytoplasmic filaments are responsible for the prevention of the loss of cytoplasm.  相似文献   
6.
The International Study of Asthma and Allergies in Childhood (ISAAC) Phase One showed large worldwide variations in the prevalence of symptoms of asthma, rhinoconjunctivitis and eczema, up to 10 to 20 fold between countries. Ecological analyses were undertaken with ISAAC Phase One data to explore factors that may have contributed to these variations, and are summarised and reviewed here.In ISAAC Phase One the prevalence of symptoms in the past 12 months of asthma, rhinoconjunctivitis and eczema were estimated from studies in 463,801 children aged 13 - 14 years in 155 centres in 56 countries, and in 257,800 children aged 6-7 years in 91 centres in 38 countries. Ecological analyses were undertaken between symptom prevalence and the following: Gross National Product per capita (GNP), food intake, immunisation rates, tuberculosis notifications, climatic factors, tobacco consumption, pollen, antibiotic sales, paracetamol sales, and outdoor air pollution.Symptom prevalence of all three conditions was positively associated with GNP, trans fatty acids, paracetamol, and women smoking, and inversely associated with food of plant origin, pollen, immunisations, tuberculosis notifications, air pollution, and men smoking. The magnitude of these associations was small, but consistent in direction between conditions. There were mixed associations of climate and antibiotic sales with symptom prevalence.The potential causality of these associations warrant further investigation. Factors which prevent the development of these conditions, or where there is an absence of a positive correlation at a population level may be as important from the policy viewpoint as a focus on the positive risk factors. Interventions based on small associations may have the potential for a large public health benefit.  相似文献   
7.
The Williams–Beuren syndrome (WBS) region at 7q11.23 is subject to several genomic rearrangements, one of which, the WBSinv-1 variant, is an inversion polymorphism. The WBSinv-1 chromosome has been shown to occur frequently in parents of individuals with WBS, implying that it predisposes the region to the WBS deletion. Here we investigate two WBS families with multiple affected children, and show that in one family, both siblings have a deletion on a WBSinv-1 chromosome background that arose due to interchromosomal recombination. These results suggest that the two WBS deletions in this family were independent events, and that there is likely a significant increase in the risk of deletion of the WBS region associated with the WBSinv-1 chromosome. The rarity of multiplex WBS families would suggest that the overall risk of having a child with WBS is still relatively low; however, families with an existing member with WBS may choose to opt for WBSinv-1 testing and genetic counseling.  相似文献   
8.
Costello syndrome is characterized by mental retardation, loose skin, coarse face, skeletal deformations, cardiomyopathy, and predisposition to numerous malignancies. The genetic origin of Costello syndrome has not yet been defined. Using immunohistochemistry and metabolic labeling with [3H]-valine, we have established that cultured skin fibroblasts obtained from patients with Costello syndrome did not assemble elastic fibers, despite an adequate synthesis of tropoelastin and normal deposition of the microfibrillar scaffold. We found that impaired production of elastic fibers by these fibroblasts is associated with a functional deficiency of the 67-kD elastin-binding protein (EBP), which is normally required to chaperone tropoelastin through the secretory pathways and to its extracellular assembly. Metabolic pulse labeling of the 67-kD EBP with radioactive serine and further chase of this tracer indicated that both normal fibroblasts and fibroblasts from patients with Costello syndrome initially synthesized comparable amounts of this protein; however, the fibroblasts from Costello syndrome patients quickly lost it into the conditioned media. Because the normal association between EBP and tropoelastin can be disrupted on contact with galactosugar-bearing moieties, and the fibroblasts from patients with Costello syndrome revealed an unusual accumulation of chondroitin sulfate-bearing proteoglycans (CD44 and biglycan), we postulate that a chondroitin sulfate may be responsible for shedding EBP from Costello cells and in turn for their impaired elastogenesis. This was further supported by the fact that exposure to chondroitinase ABC, an enzyme capable of chondroitin sulfate degradation, restored normal production of elastic fibers by fibroblasts from patients with Costello syndrome. We also present evidence that loss of EBP from fibroblasts of Costello syndrome patients is associated with an unusually high rate of cellular proliferation.  相似文献   
9.
10.
The non‐glycolytic food‐borne pathogen Campylobacter jejuni successfully colonizes the intestine of various hosts in spite of its restricted metabolic properties. While several amino acids are known to be used by C. jejuni as energy sources, none of these have been found to be essential for growth. Here we demonstrated through phenotype microarray analysis that cysteine utilization increases the metabolic activity of C. jejuni. Furthermore, cysteine was crucial for its growth as C. jejuni was unable to synthesize it from sulphate or methionine. Our study showed that C. jejuni compensates this limited anabolic capacity by utilizing sulphide, thiosulphate, glutathione and the dipeptides γGlu–Cys, Cys–Gly and Gly–Cys as sulphur sources and cysteine precursors. A panel of C. jejuni mutants in putative peptidases and peptide transporters were generated and tested for their participation in the catabolism of the cysteine‐containing peptides, and the predicted transporter protein CJJ81176_0236 was discovered to facilitate the growth with the dipeptide Cys–Gly, Ile–Arg and Ile–Trp. It was named Campylobacter peptide transporter A (CptA) and is the first representative of the oligopeptide transporter OPT family demonstrated to participate in the glutathione‐derivative Cys–Gly catabolism in prokaryotes. Our study provides new insights into how host‐ and microbiota‐derived substrates like sulphide, thiosulphate and short peptides are used by C. jejuni to compensate its restricted metabolic capacities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号