首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  10篇
  2015年   1篇
  2014年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有10条查询结果,搜索用时 0 毫秒
1
1.
Neurosteroids have been shown to modulate the N-methyl-d-aspartate (NMDA) receptor function. Dehydroepiandrosterone sulfate (DHEAS) is shown to participate in memory and learning processes as well as preventing glutamate neurotoxicity in hippocampus. In this study we have focused on the modulatory effect of neurosteroids on ifenprodil binding to the NR2B subunit of the NMDA receptor. We show that DHEAS and allopregnanolone sulfate (ALLOPREGS) exert different effects on the [(3)H]ifenprodil binding at 10, 30 or 100 nM, corresponding to physiological concentrations. The effects include changes in the ifenprodil displacement curve, changing it from a one-site fit into a two-site fit leaving B(max), K(d) and K(off) unaffected. Our results indicate that DHEAS and ALLOPREGS induce an allosteric modulation of the NMDA receptor, an observation that might contribute to the understanding of the effects of these neurosteroids.  相似文献   
2.
Obesity is a serious and growing health concern worldwide. Watching television (TV) represents a condition during which many habitually eat, irrespective of hunger level. However, as of yet, little is known about how the content of television programs being watched differentially impacts concurrent eating behavior. In this study, eighteen normal-weight female students participated in three counter-balanced experimental conditions, including a ‘Boring’ TV condition (art lecture), an ‘Engaging’ TV condition (Swedish TV comedy series), and a no TV control condition during which participants read (a text on insects living in Sweden). Throughout each condition participants had access to both high-calorie (M&Ms) and low-calorie (grapes) snacks. We found that, relative to the Engaging TV condition, Boring TV encouraged excessive eating (+52% g, P = 0.009). Additionally, the Engaging TV condition actually resulted in significantly less concurrent intake relative to the control ‘Text’ condition (−35% g, P = 0.05). This intake was driven almost entirely by the healthy snack, grapes; however, this interaction did not reach significance (P = 0.07). Finally, there was a significant correlation between how bored participants were across all conditions, and their concurrent food intake (beta = 0.317, P = 0.02). Intake as measured by kcals was similarly patterned but did not reach significance. These results suggest that, for women, different TV programs elicit different levels of concurrent food intake, and that the degree to which a program is engaging (or alternately, boring) is related to that intake. Additionally, they suggest that emotional content (e.g. boring vs. engaging) may be more associated than modality (e.g. TV vs. text) with concurrent intake.  相似文献   
3.
We have recently identified a specific binding site for the tachykinin peptide substance P (SP) fragment SP(1-7) in the rat spinal cord. This site appeared very specific for SP(1-7) as the binding affinity of this compound highly exceeded those of other SP fragments. We also observed that endomorphin-2 (EM-2) exhibited high potency in displacing SP(1-7) from this site. In the present work using a [(3)H]-labeled derivative of the heptapeptide we have identified and characterized [(3)H]-SP(1-7) binding in the rat ventral tegmental area (VTA). Similarly to the [(3)H]-SP(1-7) binding in the spinal cord the affinity of unlabeled SP(1-7) to the specific site in VTA was significantly higher than those of other SP fragments. Further, the tachykinin receptor NK-1, NK-2 and NK-3 ligands showed no or negligible binding to the identified site. However, the mu-opioid peptide (MOP) receptor agonists DAMGO, EM-1 and EM-2 did, and significant difference was observed in the binding affinity between the two endomorphins. As recorded from displacement curves the affinity of EM-2 for the SP(1-7) site was 4-5 times weaker than that for SP(1-7) but about 5 times higher than that of EM-1. The opioid receptor antagonists naloxone and naloxonazine showed weak or negligible binding. It was concluded that the specific site identified for SP(1-7) binding in the rat VTA is distinct from the MOP receptor although it exhibits high affinity for EM-2.  相似文献   
4.
Endomorphin-1 (EM-1) and endomorphin-2 (EM-2) represent two opioid active tetrapeptides with high affinity and selectivity for the mu-opioid (MOP) receptor. Both EM-1 and EM-2 exhibit strong inhibition of pain signals in the central nervous system (CNS). In contrast to these compounds, the undecapeptide substance P (SP) facilitates pain influx in the CNS. SP has been implicated in a number of functions in the central nervous system, including pain processing and reward. Its aminoterminal fragment SP1-7 has been shown to modulate several actions of SP in the CNS, the nociceptive effect included. Although the actions of SP1-7 have been known for long no specific receptor for the SP fragment has yet been cloned. In this study, we demonstrate the presence of specific binding sites for the heptapeptide in the rat spinal cord. The binding affinity for unlabeled SP1-7 to the specific sites for the labeled heptapeptide highly exceeded those of SP and other C- or N-terminal fragments thereof. The NK-1, NK-2 and NK-3 receptor ligands [Sar9, Met(O2)11]SP, R396 and senktide, respectively, showed no or negligible binding. Moreover, both EM-1 and EM-2 were found to interact with SP1-7 binding. However, a significant difference in binding affinity between the two opioid active tetrapeptides was observed. As recorded from replacement curves the affinity of EM-2 was 10 times weaker than that for SP1-7 but about 100 times higher than that of EM-1. Among other Tyr-Pro-containing peptides Tyr-MIF-1 but not Tyr-W-MIF-1 exhibited affinity of similar potency as EM-2. These results strengthen the previously observed differences between EM-1 and EM-2 in various functional studies. Moreover, using a cell line (C6) expressing the MOP receptor it was shown that the labeled SP1-7 did not interact with binding to this receptor and no functional response was seen for the SP heptapeptide on the MOP receptor by means of stimulation in the GTPgammaS assay. This suggests that the identified SP1-7 binding sites, with high affinity also for EM-2, are not identical to the MOP receptor and apparently not to any of the known tachykinin receptors.  相似文献   
5.
Neurosteroids are endogenously derived compounds, mediating rapid effects in the central nervous system. They participate in vital processes, including memory and learning, neuroplasticity, and neuroprotection in Alzheimer’s disease. However, the mechanisms behind those effects remain to be elucidated. The neurosteroids pregnenolone sulphate (PS) and pregnanolone sulphate (3α5βS) have recently been shown to allosterically alter the NMDA receptor in nanomolar concentrations. Those studies featured ifenprodil, which is a dirty drug, with affinity to many targets. In this study we compare the NMDA receptors in the hippocampus to recombinant NMDA receptors, using [3H]-MK-801 as radioligand. The results show that neurosteroids modulate the ifenprodil binding kinetics in a narrow concentration interval, addressing it to the NR2B subunit, since no effects were recorded at recombinant NR1/NR2A receptors. The effects were also seen as changes in the manner ifenprodil displaced or induced the dissociation of [3H]-MK-801. It indicates that the neurosteroidal effects indeed alter the ion pore of the NMDA receptor, why it is reasonable to believe that these findings have physiological relevance.  相似文献   
6.
Activation of the NMDA receptor leads to increased intracellular Ca2+ levels ([Ca2+]i) which induces outgrowth of and morphologic changes in the neurites of the NG108-15 cell line. This effect can be blocked by antagonists for this glutamate receptor subtype (e.g. ifenprodil or AP5). We have previously shown that nanomolar concentrations of various neurosteroids modulate ifenprodil binding to the NMDA receptor. To investigate whether this interaction affects the functioning of the receptor, we studied the effect of 24 and 48 h of pregnenolone sulphate (PS) or pregnanolone sulphate (3alpha5betaS) on glutamate-stimulated NG108-15 cells. Unexpectedly, the neurosteroids themselves had an inhibitory effect on glutamate-induced changes in neurite patterns. This effect was comparable to that of ifenprodil or AP5. Moreover, the effect of combined treatment with 3alpha5betaS and ifenprodil on neurite morphology indicated a functional interaction between the substances. Interestingly, PS induced cell detachment over time, an effect that was further enhanced by ifenprodil. Cell detachment was also seen after 48 h of treatment with 3alpha5betaS; however, the effect was blocked by ifenprodil and weaker than that of PS. The interaction with the NR2B-selective antagonist ifenprodil indicates that this NMDA receptor subunit may be involved in neurosteroid-induced NG108-15 cell detachment.  相似文献   
7.
G protein-coupled receptors (GPCRs) are a class of integral membrane proteins mediating physiological functions fundamental for survival, including energy homeostasis. A few years ago, an amino acid sequence of a novel GPCR gene was identified and named GPR178. In this study, we provide new insights regarding the biological significance of Gpr178 protein, investigating its evolutionary history and tissue distribution as well as examining the relationship between its expression level and feeding status. Our phylogenetic analysis indicated that GPR178 is highly conserved among all animal species investigated, and that GPR178 is not a member of a protein family. Real-time PCR and in situ hybridization revealed wide expression of Gpr178 mRNA in both the brain and periphery, with high expression density in the hypothalamus and brainstem, areas involved in the regulation of food intake. Hence, changes in receptor expression were assessed following several feeding paradigms including starvation and overfeeding. Short-term starvation (12–48h) or food restriction resulted in upregulation of Gpr178 mRNA expression in the brainstem, hypothalamus and prefrontal cortex. Conversely, short-term (48h) exposure to sucrose or Intralipid solutions downregulated Gpr178 mRNA in the brainstem; long-term exposure (10 days) to a palatable high-fat and high-sugar diet resulted in a downregulation of Gpr178 in the amygdala but not in the hypothalamus. Our results indicate that hypothalamic Gpr178 gene expression is altered during acute exposure to starvation or acute exposure to palatable food. Changes in gene expression following palatable diet consumption suggest a possible involvement of Gpr178 in the complex mechanisms of feeding reward.  相似文献   
8.
9.
Calcitonin gene-related peptide (CGRP) is cleaved by an endopeptidase, also known to hydrolyze substance P (SP). The enzyme which was isolated from human cerebrospinal fluid, converted rCGRP into two products, clearly separable on HPLC. Amino acid analysis showed cleavage to occur at Leu16-Ser17. The carboxy-terminal fragment, rCGRP-(17-37), was weakly active in inhibiting 125I-rCGRP binding to a rat medulla oblongata membrane preparation, but it showed no binding to spinal cord membranes. The N-terminal fragment, rCGRP-(1-16), had very low or no affinity. Autoradiography with 125I-rCGRP showed distinct labelling of rat dorsal spinal cord, while there was no consistent pattern with 125I-rCGRP-(1-16). In the isolated guinea pig ileum preparation, the two fragments showed no CGRP-like activity. The ability of CGRP to interfere with SP degradation is offered as the explanation why CGRP has been reported to potentiate several biologic actions of SP.  相似文献   
10.
Peptides with hormonal or neuronal activity are derived by enzymatic processing from pro-hormones, which by themselves are biologically inert. Processing and other enzymatic conversions may occur step-wise, leading to the formation of a cascade of biologically active (or inactive) peptides. The neurokin in substance P is known to be metabolically transformed both by amino- and endopeptidases. More N-terminal substance (1-7) has been found than C-terminal (2-11 to 5-11) fragments in various CNS areas. The substance P (1-7) fragment also shows biological activity e.g., providing analgesia, lowering blood pressure, inhibiting aggressive behavior and (in contrast to substance P) inhibiting grooming behavior. An endopeptidase generating substance P (1-7) and to a lesser extent, substance (1-8), has been isolated and characterized from human cerebrospinal fluid (CSF) and bovine spinal cord, as a metalloenzyme with essential SH-groups. Substance P co-exists with calcitonin gene related peptide (CGRP) in a large population of non-myelinated primary afferent ('pain') fibers. Intrathecal injection of substance P causes behavioral and physiological responses which are potentiated and prolonged by CGRP. It was found that CGRP competes with substance P for the endopeptidase. It is suggested that the main action of CGRP in the spinal cord is to inhibit substance P degradation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号