首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   13篇
  189篇
  2021年   4篇
  2020年   3篇
  2016年   1篇
  2015年   4篇
  2014年   6篇
  2013年   9篇
  2012年   10篇
  2011年   4篇
  2010年   5篇
  2009年   3篇
  2008年   7篇
  2007年   10篇
  2006年   12篇
  2005年   11篇
  2004年   6篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   5篇
  1976年   2篇
  1975年   3篇
  1974年   4篇
  1973年   1篇
  1972年   4篇
  1961年   1篇
  1960年   1篇
  1957年   1篇
  1951年   1篇
  1930年   1篇
排序方式: 共有189条查询结果,搜索用时 0 毫秒
1.
The induction of cytotoxic T lymphocytes (CTL) from CTL precursors requires a combination of antigen and lymphokine signals. To investigate lymphokine requirements for CTL generation, we used an assay in which helper T cell and accessory cell-depleted spleen cells or whole thymocytes were cultured with lectin (Con A) and lymphokines. This culture was followed by assessment of lectin-dependent cytolysis. High concentrations of recombinant interleukin 2 (R-IL 2) (100 U/ml) alone were not sufficient for lectin-mediated CTL induction from thymocytes, whereas 20 to 100 U/ml of R-IL 2 alone could induce a significant lectin-mediated CTL response from accessory cell-depleted spleen cells. Using thymocytes as responders, we found purified or recombinant interferon-gamma (IFN-gamma) did not cause cytolytic activity either in the absence of or in the presence of R-IL 2. However, supernatant from Con A-stimulated rat spleen cells (rat Con A SN) in combination with R-IL 2 could induce cytolytic activity, suggesting that several factors are required for CTL induction. Con A SN was fractionated by gel filtration and the fractions were tested for ability to induce CTL. In the presence of a low level of R-IL 2 (5 U/ml), fractions with a Mr of approximately 31,000 could induce CTL, and this activity was referred to as CTL differentiation factor (CDF). The peak fractions containing CDF activity did not have detectable IL 1, IL 2, IFN-gamma, or CSF activity. However, by add-back experiments and the use of blocking antibodies, a monoclonal antibody against the IL 2 receptor or antibodies against murine IFN-gamma, we demonstrated that CTL induction from mature thymocytes (L3T4-, Lyt-2+) requires CDF activity in addition to IL 2 and IFN-gamma.  相似文献   
2.
Rat hypothalamic blocks incubated in vitro were used to study the characteristics of binding of [3H]dexamethasone and other steroids to cytosolic binding sites. Cytosols prepared following incubation of the tissue with [3H]dexamethasone for 2 h contained specifically bound steroid in amounts that depended upon the concentration of potassium (but not sodium) ions in the extracting buffer. There was an increase in bound [3H]dexamethasone extracted as the potassium ion concentration increased up to 0.1 M, but not beyond. Dexamethasone, when added to hypothalami in vitro caused a biphasic inhibition of bioactive corticotrophin-releasing factor (CRF) release, and the extent of the second phase of inhibition was dose-related. 11-Epicortisol, when added in a 100-fold molar excess over dexamethasone was able to prevent the second phase of inhibition caused by the latter steroid, as in the binding studies it was able to cause a 50% reduction in the binding of [3H]dexamethasone. In the functional studies it was shown that 11-epicortisol was able to "rescue" the tissue from dexamethasone-mediated delayed inhibition of CRF secretion if added to the blocks 30 min (but not later) after the agonistic steroid.  相似文献   
3.
A DC-specific cytolytic T lymphocyte line is OKT8+1   总被引:2,自引:0,他引:2  
A human cytotoxic T lymphocyte (CTL) line, A9, was generated by limiting dilution and was selected because of its apparent DC specificity. A9 is 100% OKT3+, 90% OKT4+, and 10% OKT8+, but by negative selection the CTL present are entirely OKT8+. These OKT8+ CTL are totally inhibitable by Genox 3.53, an anti-DC1 monoclonal antibody (mAb), and Leu-10, an anti-DC subgroup mAb, but are not inhibitable by a panel of anti-HLA-DR mAb. These CTL are also inhibitable by anti-OKT3 and anti-LFA-2 but not by OKT4 or OKT8 mAb. These findings extend previous studies that showed that OKT8+ CTL recognize HLA-A,B antigens, whereas OKT4+ CTL recognize HLA-DR and SB antigens. It is possible that an as yet undefined T cell surface molecule is involved in DC recognition.  相似文献   
4.
Summary Vibrio succinogenes produces an asparaginase that does not hydrolyze glutamine, is not immunosuppressive, and has antitumor activity. Fermentor cultures initiated by small inocula exhibit a pattern of increasing enzyme activity consistent with induction during exponential phase. Semi-continuous cultures permit the harvesting of fully induced cells.  相似文献   
5.
Peptide-based vaccines that directly target T cell or B cell epitopes may have significant advantages over conventional vaccines. Further, synthetic chimeric peptides that combine strong T cell epitopes with poorly immunogenic, but immunodominant, B cell epitopes or strain-conserved B cell epitopes may be useful in eliciting antibody to such important regions. Here we characterize a human T cell epitope analyzed in 54 individuals immunized with a hepatitis B virus surface Ag vaccine. Primary cultures from a total of 59 immunized donors were assessed for their ability to respond to hepatitis B virus surface Ag and peptides, and five were non-responders (8.5%). T cell lines were established from the remaining 54 responders. Of the responders, it was found that the peptide representing amino acids 19 through 33 (19-33) elicited significant proliferation in lines derived from 50 donors. This "universal" T cell epitope, which was recognized in donors of many different HLA-DR and -DQ haplotypes, was then used to construct a chimeric peptide containing 19-33 and the third V region loop structure (V3 loop) of HIV-1 envelope gp 120, in an attempt to augment the immune response to the V3 loop peptide. The V3 loop is the region to which significant neutralizing antibody is directed. Thus, a strong immune response to a synthetic peptide that contains the strain-conserved V3 loop region could have significant therapeutic implications. The V3 loop/19-33 peptide was then used to prime mice, to determine whether V3 loop-specific antibody could be induced. The peptide elicited potent 19-33-specific proliferation in T cells isolated from draining lymph nodes, and in six of six mice anti-V3 loop antibody was elicited. Further, V3 loop/19-33-primed animals made significant levels of antibody that bound rgp120. These data suggest that, when a major T cell epitope is synthesized in tandem with the V3 loop, a significant immune response against the loop can be elicited. Thus, given the finding that neutralizing antibody may play a role in the control and/or prevention of HIV infection, an HIV vaccine composed of a T cell epitope-containing peptide may prove effective. In addition, this type of approach can be generalized to the design of peptide-based vaccines.  相似文献   
6.
To better define the biologic function of the type II insulin-like growth factor (IGF) receptor, we raised a blocking antiserum in a rabbit by immunizing with highly purified rat type II IGF receptor. On immunoblots of crude type II receptor preparations, only bands corresponding to the type II IGF receptor were seen with IgG 3637, indicating that the antiserum was specific for the type II receptor. Competitive binding and chemical cross-linking experiments showed that IgG 3637 blocked binding of 125I-IGF-II to the rat type II IGF receptor, but did not block binding of 125I-IGF-I to the type I IGF receptor, nor did IgG 3637 block binding of 125I-insulin to the insulin receptor. In addition, IgG 3637 did not inhibit the binding of 125I-IGF-II to partially purified 150- and 40-kDa IGF carrier proteins from adult and fetal rat serum. L6 myoblasts have both type I and type II IGF receptors. IGF-I was more potent than IGF-II in stimulating N-methyl-alpha-[14C]aminoisobutyric acid uptake, 2-[3H]deoxyglucose uptake, and [3H]leucine incorporation into cellular proteins. IgG 3637 did not stimulate either 2-[3H]deoxyglucose uptake, N-methyl-alpha-[14C]aminoisobutyric acid uptake, or [3H]leucine incorporation into protein when tested alone. Furthermore, IgG 3637 at concentrations sufficient to block type II receptors under conditions of the uptake and incorporation experiments did not cause a shift to the right of the dose-response curve for stimulation of these biologic functions by IGF-II. We conclude that the type II IGF receptor does not mediate IGF stimulation of N-methyl-alpha-[14C]aminoisobutyric acid and 2-[3H]deoxyglucose uptake and protein synthesis in L6 myoblasts; presumably, the type I receptor mediates these biologic responses. The anti-type II receptor antibody inhibited IGF-II degradation in the media by greater than 90%, suggesting that the major degradative pathway for IGF-II in L6 myoblasts utilizes the type II IGF receptor.  相似文献   
7.
8.
Elevated levels of reactive oxygen species (ROS) play a critical role in cardiac myocyte signaling in both healthy and diseased cells. Mitochondria represent the predominant cellular source of ROS, specifically the activity of complexes I and III. The model presented here explores the modulation of electron transport chain ROS production for state 3 and state 4 respiration and the role of substrates and respiratory inhibitors. Model simulations show that ROS production from complex III increases exponentially with membrane potential (ΔΨm) when in state 4. Complex I ROS release in the model can occur in the presence of NADH and succinate (reverse electron flow), leading to a highly reduced ubiquinone pool, displaying the highest ROS production flux in state 4. In the presence of ample ROS scavenging, total ROS production is moderate in state 3 and increases substantially under state 4 conditions. The ROS production model was extended by combining it with a minimal model of ROS scavenging. When the mitochondrial redox status was oxidized by increasing the proton permeability of the inner mitochondrial membrane, simulations with the combined model show that ROS levels initially decline as production drops off with decreasing ΔΨm and then increase as scavenging capacity is exhausted. Hence, this mechanistic model of ROS production demonstrates how ROS levels are controlled by mitochondrial redox balance.  相似文献   
9.
It has been observed experimentally that cells from failing hearts exhibit elevated levels of reactive oxygen species (ROS) upon increases in energetic workload. One proposed mechanism for this behavior is mitochondrial Ca2+ mismanagement that leads to depletion of ROS scavengers. Here, we present a computational model to test this hypothesis. Previously published models of ROS production and scavenging were combined and reparameterized to describe ROS regulation in the cellular environment. Extramitochondrial Ca2+ pulses were applied to simulate frequency-dependent changes in cytosolic Ca2+. Model results show that decreased mitochondrial Ca2+uptake due to mitochondrial Ca2+ uniporter inhibition (simulating Ru360) or elevated cytosolic Na+, as in heart failure, leads to a decreased supply of NADH and NADPH upon increasing cellular workload. Oxidation of NADPH leads to oxidation of glutathione (GSH) and increased mitochondrial ROS levels, validating the Ca2+ mismanagement hypothesis. The model goes on to predict that the ratio of steady-state [H2O2]m during 3Hz pacing to [H2O2]m at rest is highly sensitive to the size of the GSH pool. The largest relative increase in [H2O2]m in response to pacing is shown to occur when the total GSH and GSSG is close to 1 mM, whereas pool sizes below 0.9 mM result in high resting H2O2 levels, a quantitative prediction only possible with a computational model.  相似文献   
10.
Organic Lake is a shallow, marine-derived hypersaline lake in the Vestfold Hills, Antarctica that has the highest reported concentration of dimethylsulfide (DMS) in a natural body of water. To determine the composition and functional potential of the microbial community and learn about the unusual sulfur chemistry in Organic Lake, shotgun metagenomics was performed on size-fractionated samples collected along a depth profile. Eucaryal phytoflagellates were the main photosynthetic organisms. Bacteria were dominated by the globally distributed heterotrophic taxa Marinobacter, Roseovarius and Psychroflexus. The dominance of heterotrophic degradation, coupled with low fixation potential, indicates possible net carbon loss. However, abundant marker genes for aerobic anoxygenic phototrophy, sulfur oxidation, rhodopsins and CO oxidation were also linked to the dominant heterotrophic bacteria, and indicate the use of photo- and lithoheterotrophy as mechanisms for conserving organic carbon. Similarly, a high genetic potential for the recycling of nitrogen compounds likely functions to retain fixed nitrogen in the lake. Dimethylsulfoniopropionate (DMSP) lyase genes were abundant, indicating that DMSP is a significant carbon and energy source. Unlike marine environments, DMSP demethylases were less abundant, indicating that DMSP cleavage is the likely source of high DMS concentration. DMSP cleavage, carbon mixotrophy (photoheterotrophy and lithoheterotrophy) and nitrogen remineralization by dominant Organic Lake bacteria are potentially important adaptations to nutrient constraints. In particular, carbon mixotrophy relieves the extent of carbon oxidation for energy production, allowing more carbon to be used for biosynthetic processes. The study sheds light on how the microbial community has adapted to this unique Antarctic lake environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号