首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  6篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Somatic embryogenesis in plantain banana   总被引:8,自引:0,他引:8  
Summary A cell suspension of French Sombre plantain banana (Musa spp. AAB genome) was initiated from callus obtained from young male flowers. Histological examination enabled us to describe and follow the evolution of the suspension consisting of: embryogenic aggregates, proembryos, nodules, and isolated cells. It demonstrated the unicellular origin of somatic embryos, either during maintenance of the suspension or after plating on a semisolid medium. The cells from which the embryos originated had no starch but only protein reserves. Plating 1 ml of packed cells from the suspension led to the formation of 105 embryos of which 10 to 40% could be converted into plantlets.  相似文献   
2.
Somatic embryogenesis from immature male flowers in Musa is only suitable for genotypes with a male bud. Six friable embryogenic cultures were obtained from 28 cultured buds of female flowers of the AAB False Horn Plantains, ‘Curraré’ and ‘Curraré Enano’. Embryogenic suspensions were established from these embryogenic cultures. Somatic embryogenesis was demonstrated histologicaly. Regeneration of plants was obtained either from somatic embryos directly isolated from embryogenic cultures or from suspensions after plating on a semi-solid medium. This study demonstrates that somatic embryogenesis from immature flowers is suitable for genotypes of Musa with or without male buds. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
3.
In leaves, although it is accepted that CO(2) evolved by dark respiration after illumination is naturally (13) C-enriched compared to organic matter or substrate sucrose, much uncertainty remains on whether day respiration produces (13) C-depleted or (13) C-enriched CO(2). Here, we applied equations described previously for mesocosm CO(2) exchange to investigate the carbon isotope composition of CO(2) respired by autotrophic and heterotrophic tissues of Pelargonium × hortorum leaves, taking advantage of leaf variegation. Day-respired CO(2) was slightly (13) C-depleted compared to organic matter both under 21% O(2) and 2% O(2). Furthermore, most, if not all CO(2) molecules evolved in the light came from carbon atoms that had been fixed previously before the experiments, in both variegated and green leaves. We conclude that the usual definition of day respiratory fractionation, that assumes carbon fixed by current net photosynthesis is the respiratory substrate, is not valid in Pelargonium leaves under our conditions. In variegated leaves, total organic matter was slightly (13) C-depleted in white areas and so were most primary metabolites. This small isotopic difference between white and green areas probably came from the small contribution of photosynthetic CO(2) refixation and the specific nitrogen metabolism in white leaf areas.  相似文献   
4.
Axillary buds from greenhouse-grown plants of Rosa chinensis ‘Old Blush’ were successfully used to establish cryopreservation protocols using both droplet-vitrification and encapsulation-dehydration methods. In droplet vitrification, regrowth occurred after exposure to liquid nitrogen even without pre-culture in the loading solution (LS) before immersion in the plant vitrification solution 2 (PVS2). However, a 20–80 min LS step followed by a short immersion in PVS2 for 3 or 15 min, at 0 °C gave the best regrowth rates (82–86 %). In encapsulation dehydration, the level of dehydration significantly influenced shoot regrowth. The best regrowth rate, 60 %, was obtained at a bead water content of 0.35 g water per g dry weight. These results demonstrate the possibility of using greenhouse plants of rose for cryopreservation by droplet vitrification and encapsulation dehydration.  相似文献   
5.
6.
Protoplast culture and plant regeneration of the dessert banana cultivar Grande Naine (Musa spp., Cavendish sub-group AAA) were achieved through somatic embryogenesis. Protoplasts were isolated from cell suspensions at a yield of 3᎒7 protoplasts/ml packed cell volume (0.5 g). For the induction of cell divisions, two banana cell suspensions, SF265 (AA) and IRFA903 (AA), were used as feeder layers. SF265 (AA) was found to be more efficient for inducing cell divisions than IRFA903 (AA). The first embryogenic cell suspensions were established from protoplast-derived microcalli. The transfer of microcalli and protoplast-derived cell suspensions onto regeneration medium containing plant growth regulators slightly increased the number of embryos relative to those maintained on a feeder layer with growth regulators. Plant regeneration was achieved in the same regeneration medium.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号