首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   8篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   9篇
  2013年   8篇
  2012年   12篇
  2011年   13篇
  2010年   8篇
  2009年   4篇
  2007年   9篇
  2006年   5篇
  2005年   5篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1980年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有152条查询结果,搜索用时 46 毫秒
1.
2.
cDNA clones were selected from a corn (Zea mays L.) leaf lambda gt11 expression library using polyclonal antibodies for corn leaf NADH:nitrate reductase. One clone, Zmnrl, had a 2.1 kilobase insert, which hybridized to a 3.2 kilobase mRNA. The deduced amino acid sequence of Zmnrl was nearly identical to peptide sequences of corn leaf NADH:nitrate reductase. Another clone, Zm6, had an insert of 1.4 kilobase, which hybridized to a 1.4 kilobase mRNA, and its sequence coded for chloroplastic NAD(P)+:glyceraldehyde-3-phosphate dehydrogenase based on comparisons to sequences of this enzyme from tobacco and corn. When nitrate was supplied to N-starved, etiolated corn plants, nitrate reductase, and glyceraldehyde-3-phosphate dehydrogenase mRNA levels in leaves increased in parallel. When green leaves were treated with nitrate, only nitrate reductase mRNA levels were increased. Nitrate is a specific inducer of nitrate reductase in green leaves, but appears to have a more general effect in etiolated leaves. In the dark, nitrate induced nitrate reductase expression in both etiolated and green leaves, indicating light and functional chloroplast were not required for enzyme expression.  相似文献   
3.
In etiolated squash (Cucurbita maxima L.) cotyledons, nitrate-inducible NADH:nitrate reductase activity and protein were increased in darkness by red light pulses with red/far-red photoreversibility. Continuous far-red light also led to increased levels of nitrate reductase activity and protein. Poly(A)+RNA, which hybridizes to squash nitrate reductase cDNA, was also increased by light treatments. Thus, we found that after nitrate triggering, nitrate reductase expression appears to be regulated by light via phytochrome.  相似文献   
4.
Codon usage in higher plants, green algae, and cyanobacteria   总被引:3,自引:1,他引:2  
Codon usage is the selective and nonrandom use of synonymous codons by an organism to encode the amino acids in the genes for its proteins. During the last few years, a large number of plant genes have been cloned and sequenced, which now permits a meaningful comparison of codon usage in higher plants, algae, and cyanobacteria. For the nuclear and organellar genes of these organisms, a small set of preferred codons are used for encoding proteins. Codon usage is different for each genome type with the variation mainly occurring in choices between codons ending in cytidine (C) or guanosine (G) versus those ending in adenosine (A) or uridine (U). For organellar genomes, chloroplastic and mitochrondrial proteins are encoded mainly with codons ending in A or U. In most cyanobacteria and the nuclei of green algae, proteins are encoded preferentially with codons ending in C or G. Although only a few nuclear genes of higher plants have been sequenced, a clear distinction between Magnoliopsida (dicot) and Liliopsida (monocot) codon usage is evident. Dicot genes use a set of 44 preferred codons with a slight preference for codons ending in A or U. Monocot codon usage is more restricted with an average of 38 codons preferred, which are predominantly those ending in C or G. But two classes of genes can be recognized in monocots. One set of monocot genes uses codons similar to those in dicots, while the other genes are highly biased toward codons ending in C or G with a pattern similar to nuclear genes of green algae. Codon usage is discussed in relation to evolution of plants and prospects for intergenic transfer of particular genes.  相似文献   
5.
Volume regulation by flounder red blood cells in anisotonic media   总被引:4,自引:2,他引:2       下载免费PDF全文
The nucleated high K, low Na red blood cells of the winter flounder demonstrated a volume regulatory response subsequent to osmotic swelling or shrinkage. During volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation after osmotic swelling is referred to as regulatory volume decrease (RVD) and was characterized by net K and water loss. Since the electrochemical gradient for K is directed out of the cell there is no need to invoke active processes to explain RVD. When osmotically shrunken, the flounder erythrocyte demonstrated a regulatory volume increase (RVI) back toward control cell volume. The water movements characteristic of RVI were a consequence of net cellular NaCl and KCl uptake with Na accounting for 75 percent of the increase in intracellular cation content. Since the Na electrochemical gradient is directed into the cell, net Na uptake was the result of Na flux via dissipative pathways. The addition of 10(-4)M ouabain to suspensions of flounder erythrocytes was without effect upon net water movements during volume regulation. The presence of ouabain did however lead to a decreased ration of intracellular K:Na. Analysis of net Na and K fluxes in the presence and absence of ouabain led to the conclusion that Na and K fluxes via both conservative and dissipative pathways are increased in response to osmotic swelling or shrinkage. In addition, the Na and K flux rate through both pump and leak pathways decreased in a parallel fashion as cell volume was regulated. Taken as a whole, the Na and K movements through the flounder erythrocyte membrane demonstrated a functional dependence during volume regulation.  相似文献   
6.
7.

Uxmal and Tulum are two important Mayan sites in the Yucatan peninsula. The buildings are mainly composed of limestone and grey/black discoloration is seen on exposed walls and copious greenish biofilms on inner walls. The principal microorganisms detected on interior walls at both Uxmal and Tulum were cyanobacteria; heterotrophic bacteria and filamentous fungi were also present. A dark‐pigmented mitosporic fungus and Bacillus cereus, both isolated from Uxmal, were shown to be acidogenic in laboratory cultures. Cyanobacteria belonging to rock‐degrading genera Synechocystis and Gloeocapsa were identified at both sites. Surface analysis previously showed that calcium ions were present in the biofilms on buildings at Uxmal and Tulum, suggesting the deposition of biosolubilized stone. Apart from their potential to degrade the substrate, the coccoid cyanobacteria supply organic nutrients for bacteria and fungi, which can produce organic acids, further increasing stone degradation.  相似文献   
8.
9.
10.
A number of 2,4-thiazolidinedione derivatives of -phenyl substituted cinnamic acid were synthesized and studied for their PPAR agonist activity. The E-isomer of cinnamic acid, 11, showed moderate PPAR transactivation. The corresponding Z-isomer, 23, and double bond reduced derivative, 15, were found to be much less potent. Although the E-isomer showed a moderate PPAR gamma transactivation, it demonstrated a strong glucose-lowering effect in a genetic rodent model of diabetes. Results of pharmacokinetic, metabolism and permeability studies are consistent with 11 being an active prodrug with an active metabolite, 14, that has similar glucose lowering and PPAR gamma agonist properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号