首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   0篇
  132篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   7篇
  2011年   24篇
  2010年   7篇
  2009年   6篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   12篇
  2004年   4篇
  2003年   8篇
  2002年   8篇
  2001年   10篇
  2000年   8篇
  1999年   2篇
  1992年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1965年   1篇
排序方式: 共有132条查询结果,搜索用时 15 毫秒
1.
Radiosensitivity of Chinese hamster cells increased by 1.71 times in the presence of arabinoside cytosine and hydroxyurea after gamma-irradiation, and no sensitization occurred after irradiation with carbon ions of 6.6 MeV/nuclon (LET, 227 keV/micron). Under a standard set of conditions, the RBE coefficient of carbon ions decreased from 3.09 to 1.78 in the presence of DNA synthesis inhibitors. The possible mechanism of this phenomenon is discussed.  相似文献   
2.
3.
Catalysis of peptide bond formation in the peptidyl transferase center is a major enzymatic activity of the ribosome. Mutations limiting peptidyl transferase activity are mostly lethal. However, cellular processes triggered by peptidyl transferase deficiency in the bacterial cell are largely unknown. Here we report a study of the lethal G2061C mutant of Escherichia coli 23S ribosomal RNA (rRNA). The G2061C mutation completely impaired the puromycin reaction and abolished formation of the active firefly luciferase in an in vitro translation system, while poly(U)- and short synthetic mRNA-directed peptidyl transferase reaction with aminoacylated tRNAs in vitro was seemingly unaffected. Study of the cellular proteome upon expression of the 23S rRNA gene carrying the G2061C mutation compared to cells expressing wild-type 23S rRNA gene revealed substantial differences. Most of the observed effects in the mutant were associated with reduced expression of stress response proteins and particularly proteins associated with the ppGpp-mediated stringent response.  相似文献   
4.
The set of the laboratory strain M. hominis H-34 mutants resistant to fluoroquinolones (ciprofloxacin-Cfl, lomefloxacin-Lfl, ofloxacin-Ofl) was obtained by selection in broth medium. The mutation was found in the quinolone resistance-determining region (QRDR) of A subunit of topoisomerase IV gene (parC) and new mutations were found in QRDR of genes encoding the A subunit of DNA gyrase (gyrA) in M. hominis mutants resistant to various concentrations of the Cfl, Lfl and Ofl. After multistep selection of the obtained mutants at constant concentrations of Cfl additional mutation Ser83 to Trp was revealed. No mutations in parE and gyrB were found. Mutations in parC for laboratory strain M. hominis H34 appeared at lower antibiotic concentrations than in gyrA. All mutations in gyr A were associated with mutations in parC. This confirms the previous data that topoisomerase IV is the primary target of Cfl and Ofl and suggests that it is the primary target of Lfl. Some M. hominis mutants selected at Ofl without any substitution in QRDRs were shown to be insensitive to Cfl and of Lfl. Studies of cross-resistance of the selected M. hominis mutants showed that their resistance to various fluoroquinolone concentrations could not depend on any mutations in QRDR of topoisomerase IV and DNA gyrase genes and suggests involvement of other unknown molecular mechanisms specific for Mycoplasmas.  相似文献   
5.
6.
Protein-protein interactions play a central role in numerous processes in the cell and are one of the main fields of functional proteomics. This review highlights the methods of bioinformatics and functional proteomics of protein-protein interaction investigation. The structures and properties of contact surfaces, forces involved in protein-protein interactions, kinetic and thermodynamic parameters of these reactions were considered. The properties of protein contact surfaces depend on their functions. The contact surfaces of permanent complexes resemble domain contacts or the protein core and it is reasonable to consider such complex formation as a continuation of protein folding. Characteristics of contact surfaces of temporary protein complexes share some similarities with active sites of enzymes. The contact surfaces of the temporary protein complexes have unique structure and properties and they are more conservative in comparison with active site of enzymes. So they represent prospective targets for a new generation of drugs. During the last decade, numerous investigations were undertaken to find or design small molecules that block protein dimerization or protein(peptide)-receptor interaction, or, on the contrary, to induce protein dimerization.  相似文献   
7.
Nucleotide sequence of Acholeplasma laidlawii genome site PG-8B (1000 n.p.), containing topoisomerase IV subunit genes (parE and parC), has been determined. Sequenced genome site contains a gene fragment coding for the C-terminal region of ParE and gene fragment coding for N-terminal region of ParC. Topoisomerase IV subunite genes in A. laidlawii genome are situated near each other and overlapping by 4 nucleotides. Selection in liquid nutrient medium with ascending antibiotic concentrations resulted in derivation of A. laidlawii PG-8B cells resistant to ciprofloxacin, a fluoroquinolone. The resistant clones contain a mutation in the parC QRDR region determining fluoroquinolone resistance: Ser(91) (corresponding to Ser(80) in Escherichia coli ParC) replacement) for Leu.  相似文献   
8.
9.
The goal of this work was to create a model for the long persistence of Mycoplasma gallisepticum in depleted medium and under low growth temperature followed by proteomic study of the model. Nanoforms and revertants for M. gallisepticum were obtained. Proteomic maps were produced for different stages of the formation of nanoforms and revertants. It is shown that proteins responsible for essential cellular processes of glycolysis, translation elongation, and DnaK chaperone involved in the stabilization of newly synthesized proteins are crucial for the reversion of M. gallisepticum to a vegetative form. Based on the current data, it is assumed that changes in the metabolism of M. gallisepticum during nanoforming are not post-mortal, thus M. gallisepticum does not transform to uncultivable form, but remains in a reversible dormant state during prolonged unfavorable conditions.  相似文献   
10.
A MALDI TOF MS based minisequencing method has been developed and applied for the analysis of rifampin (RIF)- and isoniazid (INH)-resistant M. tuberculosis strains. Eight genetic markers of RIF resistance-nucleotide polymorphisms located in RRDR of rpoB gene, and three of INH resistance including codon 315 of katG gene and − 8 and − 15 positions of the promoter region of fabG1-inhA operon were worked out. Based on the analysis of 100 M. tuberculosis strains collected from the Moscow region in 1997–2005 we deduced that 91% of RIF-resistant and 94% of INH-resistant strains can be identified using the technique suggested. The approach is rapid, reliable and allows to reveal the drug resistance of M. tuberculosis strains within 12 h after sample isolation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号