首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   9篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2017年   3篇
  2016年   2篇
  2015年   8篇
  2014年   12篇
  2013年   6篇
  2012年   11篇
  2011年   13篇
  2010年   9篇
  2009年   6篇
  2008年   3篇
  2007年   6篇
  2006年   10篇
  2005年   10篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   6篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有133条查询结果,搜索用时 31 毫秒
1.
Hepatocellular carcinoma (HCC) is one of the most common cancers in Taiwan. Although chemotherapy is the primary treatment for HCC patients, drug resistance often leads to clinical failure. Galectin-1 is a beta-galactoside binding lectin which is up-regulated in HCC patients and promotes tumor growth by mediating cancer cell adhesion, migration and proliferation, but its role in chemoresistance of HCC is poorly understood. In this study we found that galectin-1 is able to lead to chemoresistance against cisplatin treatment, and subsequent inhibition has reversed the effect of cell death in HCC cells. Moreover, galectin-1 was found to induce autophagic flux in HCC cells. Inhibition of autophagy by inhibitors or knockdown of Atg5 cancels galectin-1-induced cisplatin resistance in HCC cells. Increase of mitophagy triggered by galectin-1 was found to reduce the mitochondrial potential loss and apoptosis induced by cisplatin treatment. Finally, using an in situ hepatoma mouse model, we clearly demonstrated that inhibition of galectin-1 by thiodigalactoside could significantly augment the anti-HCC effect of cisplatin. Taken together, our findings offer a new insight into the chemoresistance galectin-1 causes against cisplatin treatment, and points to a potential approach to improve the efficacy of cisplatin in the treatment of HCC patients.  相似文献   
2.
Eukaryotic parasites of the genus Plasmodium cause malaria by invading and developing within host erythrocytes. Here, we demonstrate that PfShelph2, a gene product of Plasmodium falciparum that belongs to the Shewanella-like phosphatase (Shelph) subfamily, selectively hydrolyzes phosphotyrosine, as shown for other previously studied Shelph family members. In the extracellular merozoite stage, PfShelph2 localizes to vesicles that appear to be distinct from those of rhoptry, dense granule, or microneme organelles. During invasion, PfShelph2 is released from these vesicles and exported to the host erythrocyte. In vitro, PfShelph2 shows tyrosine phosphatase activity against the host erythrocyte protein Band 3, which is the most abundant tyrosine-phosphorylated species of the erythrocyte. During P. falciparum invasion, Band 3 undergoes dynamic and rapid clearance from the invasion junction within 1 to 2 s of parasite attachment to the erythrocyte. Release of Pfshelph2 occurs after clearance of Band 3 from the parasite-host cell interface and when the parasite is nearly or completely enclosed in the nascent vacuole. We propose a model in which the phosphatase modifies Band 3 in time to restore its interaction with the cytoskeleton and thus reestablishes the erythrocyte cytoskeletal network at the end of the invasion process.  相似文献   
3.
Ex vivo perfusion of human spleens revealed innate retention of numerous cultured Plasmodium falciparum ring-infected red blood cells (ring-iRBCs). Ring-iRBC retention was confirmed by a microsphiltration device, a microbead-based technology that mimics the mechanical filtering function of the human spleen. However, the cellular alterations underpinning this retention remain unclear. Here, we use ImageStream technology to analyze infected RBCs’ morphology and cell dimensions before and after fractionation with microsphiltration. Compared to fresh normal RBCs, the mean cell membrane surface area loss of trophozoite-iRBCs, ring-iRBCs and uninfected co-cultured RBCs (uRBCs) was 14.2% (range: 8.3–21.9%), 9.6% (7.3–12.2%) and 3.7% (0–8.4), respectively. Microsphilters retained 100%, ∼50% and 4% of trophozoite-iRBCs, ring-iRBCs and uRBCs, respectively. Retained ring-iRBCs display reduced surface area values (estimated mean, range: 17%, 15–18%), similar to the previously shown threshold of surface-deficient RBCs retention in the human spleen (surface area loss: >18%). By contrast, ring-iRBCs that successfully traversed microsphilters had minimal surface area loss and normal sphericity, suggesting that these parameters are determinants of their retention. To confirm this hypothesis, fresh normal RBCs were exposed to lysophosphatidylcholine to induce a controlled loss of surface area. This resulted in a dose-dependent retention in microsphilters, with complete retention occurring for RBCs displaying >14% surface area loss. Taken together, these data demonstrate that surface area loss and resultant increased sphericity drive ring-iRBC retention in microsphilters, and contribute to splenic entrapment of a subpopulation of ring-iRBCs. These findings trigger more interest in malaria research fields, including modeling of infection kinetics, estimation of parasite load, and analysis of risk factors for severe clinical forms. The determination of the threshold of splenic retention of ring-iRBCs has significant implications for diagnosis (spleen functionality) and drug treatment (screening of adjuvant therapy targeting ring-iRBCs).  相似文献   
4.
Vaso-occlusive events are the major source of morbidity and mortality in sickle cell disease (SCD); however, the pathogenic mechanisms driving these events remain unclear. Using hypoxia to induce pulmonary injury, we investigated mechanisms by which sickle hemoglobin increases susceptibility to lung injury in a murine model of SCD, where mice either exclusively express the human alpha/sickle beta-globin (halphabetaS) transgene (SCD mice) or are heterozygous for the normal murine beta-globin gene and express the halphabetaS transgene (mbeta+/-, halphabetaS+/-; heterozygote SCD mice). Under normoxia, lungs from the SCD mice contained higher levels of xanthine oxidase (XO), nitrotyrosine, and cGMP than controls (C57BL/6 mice). Hypoxia increased XO and nitrotyrosine and decreased cGMP content in the lungs of all mice. After hypoxia, vascular congestion was increased in lungs with a greater content of XO and nitrotyrosine. Under normoxia, the association of heat shock protein 90 (HSP90) with endothelial nitric oxide synthase (eNOS) in lungs of SCD and heterozygote SCD mice was decreased compared with the levels of association in lungs of controls. Hypoxia further decreased association of HSP90 with eNOS in lungs of SCD and heterozygote SCD mice, but not in the control lungs. Pretreatment of rat pulmonary microvascular endothelial cells in vitro with xanthine/XO decreased A-23187-stimulated nitrite + nitrate production and HSP90 interactions with eNOS. These data support the hypotheses that hypoxia increases XO release from ischemic tissues and that the local increase in XO-induced oxidative stress can then inhibit HSP90 interactions with eNOS, decreasing *NO generation and predisposing the lung to vaso-occlusion.  相似文献   
5.
Protein 4.1R, a multifunctional structural protein, acts as an adaptor in mature red cell membrane skeletons linking spectrin-actin complexes to plasma membrane-associated proteins. In nucleated cells protein 4.1 is not associated exclusively with plasma membrane but is also detected at several important subcellular locations crucial for cell division. To identify 4.1 domains having critical functions in nuclear assembly, 4.1 domain peptides were added to Xenopus egg extract nuclear reconstitution reactions. Morphologically disorganized, replication deficient nuclei assembled when spectrin-actin-binding domain or NuMA-binding C-terminal domain peptides were present. However, control variant spectrin-actin-binding domain peptides incapable of binding actin or mutant C-terminal domain peptides with reduced NuMA binding had no deleterious effects on nuclear reconstitution. To test whether 4.1 is required for proper nuclear assembly, 4.1 isoforms were depleted with spectrin-actin binding or C-terminal domain-specific antibodies. Nuclei assembled in the depleted extracts were deranged. However, nuclear assembly could be rescued by the addition of recombinant 4.1R. Our data establish that protein 4.1 is essential for nuclear assembly and identify two distinct 4.1 domains, initially characterized in cytoskeletal interactions, that have crucial and versatile functions in nuclear assembly.  相似文献   
6.
An anatomically accurate human upper airway model was constructed from multiple magnetic resonance imaging axial scans. This model was used to conduct detailed Computational Fluid Dynamics (CFD) simulations during expiration, to investigate the fluid flow in the airway regions where obstruction could occur. An identical physical model of the same airway was built using stereo lithography. Pressure and velocity measurements were conducted in the physical model. Both simulations and experiments were performed at a peak expiratory flow rate of 200 L/min. Several different numerical approaches within the FLUENT commercial software framework were used in the simulations; unsteady Large Eddy Simulation (LES), steady Reynolds-Averaged Navier-Stokes (RANS) with two-equation turbulence models (i.e. k?ε, standard k?ω, and k?ω Shear Stress Transport (SST)) and with one-equation Spalart–Allmaras model. The CFD predictions of the average wall static pressures at different locations along the airway wall were favorably compared with the experimental data. Among all the approaches, standard k?ω turbulence model resulted in the best agreement with the static pressure measurements, with an average error of ~20% over all ports. The highest positive pressures were observed in the retroglossal regions below the epiglottis, while the lowest negative pressures were recorded in the retropalatal region. The latter is a result of the airflow acceleration in the narrow retropalatal region. The largest pressure drop was observed at the tip of the soft palate. This location has the smallest cross section of the airway. The good agreement between the computations and the experimental results suggest that CFD simulations can be used to accurately compute aerodynamic flow characteristics of the upper airway.  相似文献   
7.
Gram-negative ‘superbugs’ such as New Delhi metallo-beta-lactamase-1 (bla NDM-1) producing pathogens have become world’s major public health threats. Development of molecular strategies that can rehabilitate the ‘old antibiotics’ and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMs) that restore the antibacterial efficacy (enhancement by >80-1250 fold) of tetracycline antibiotics towards bla NDM-1 Klebsiella pneumonia and bla NDM-1 Escherichia coli clinical isolates. Organismic studies showed that bacteria had an increased and faster uptake of tetracycline in the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover, bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards bla NDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs.  相似文献   
8.
9.
We report bovine serum albumin (BSA)–boronic acid (BA) conjugates as lectin mimetics and their glyco-capturing capacity. The BSA–BA conjugates were synthesized by amidation of carboxylic acid groups in BSA with aminophenyl boronic acid in the presence of EDC, and were characterized by Alizarin Red S (ARS) assay and SDS–PAGE gel. The BSA–BA conjugates were immobilized onto maleimide-functionalized silica beads and their sugar capturing capacity and specificity were confirmed by ARS displacement assay. Further, surface plasmon resonance (SPR) analysis of the glyco-capturing activity of the BSA–BA conjugates was conducted by immobilizing BSA–BA onto SPR gold chip. Overall, we demonstrated a BSA–BA-based lectin mimetics for glyco-capturing applications. These lectin mimetics are expected to provide an important tool for glycomics and biosensor research and applications.  相似文献   
10.
The yeast Saccharomyces cerevisiae is a widely used model organism for studying cell biology, metabolism, cell cycle and signal transduction. Many regulatory pathways are conserved between this yeast and humans, and it is therefore possible to study pathways that are involved in disease development in a model organism that is easy to manipulate and that allows for detailed molecular studies. Here, we briefly review pathways involved in lipid metabolism and its regulation, the regulatory network of general metabolic regulator Snf1 (and its human homologue AMPK) and the proteostasis network with its link to stress and cell death. All the mentioned pathways can be used as model systems for the study of homologous pathways in human cells and a failure in these pathways is directly linked to several human diseases such as the metabolic syndrome and neurodegeneration. We demonstrate how different yeast pathways are conserved in humans, and we discuss the possibilities of using the systems biology approach to study and compare the pathways of relevance with the objective to generate hypotheses and gain new insights.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号