首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   4篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   5篇
  2013年   3篇
  2012年   6篇
  2011年   5篇
  2010年   6篇
  2009年   4篇
  2007年   2篇
  2006年   2篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  1996年   1篇
  1995年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
1.
Hepatocellular carcinoma (HCC) is one of the most common cancers in Taiwan. Although chemotherapy is the primary treatment for HCC patients, drug resistance often leads to clinical failure. Galectin-1 is a beta-galactoside binding lectin which is up-regulated in HCC patients and promotes tumor growth by mediating cancer cell adhesion, migration and proliferation, but its role in chemoresistance of HCC is poorly understood. In this study we found that galectin-1 is able to lead to chemoresistance against cisplatin treatment, and subsequent inhibition has reversed the effect of cell death in HCC cells. Moreover, galectin-1 was found to induce autophagic flux in HCC cells. Inhibition of autophagy by inhibitors or knockdown of Atg5 cancels galectin-1-induced cisplatin resistance in HCC cells. Increase of mitophagy triggered by galectin-1 was found to reduce the mitochondrial potential loss and apoptosis induced by cisplatin treatment. Finally, using an in situ hepatoma mouse model, we clearly demonstrated that inhibition of galectin-1 by thiodigalactoside could significantly augment the anti-HCC effect of cisplatin. Taken together, our findings offer a new insight into the chemoresistance galectin-1 causes against cisplatin treatment, and points to a potential approach to improve the efficacy of cisplatin in the treatment of HCC patients.  相似文献   
2.
The identity of intermolecular contact residues in sickle hemoglobin (HbS) fiber is largely known. However, our knowledge about combinatorial effects of two or more contact sites or the mechanistic basis of such effects is rather limited. Lys16, His20, and Glu23 of the α-chain occur in intra-double strand axial contacts in the sickle hemoglobin (HbS) fiber. Here we have constructed two novel double mutants, HbS (K16Q/E23Q) and (H20Q/E23Q), with a view to delineate cumulative impact of interactions emanating from the above contact sites. Far-UV and visible region CD spectra of the double mutants were similar to the native HbS indicating the presence of native-like secondary and tertiary structure in the mutants. The quaternary structures in both the mutants were also preserved as judged by the derivative UV spectra of liganded (oxy) and unliganded (deoxy) forms of the double mutants. However, the double mutants displayed interesting polymerization behavior. The polymerization behaviour of the double mutants was found to be non-additive of the individual single mutants. While HbS (H20Q/E23Q) showed inhibitory effect similar to that of HbS (E23Q), the intrinsic inhibitory propensity of the associated single mutants was totally quelled in HbS (K16Q/E23Q) double mutant. Molecular dynamics (MD) simulations studies of the isolated α-chains as well as a module of the fiber containing the double and associated single mutants suggested that these contact sites at the axial interface of the fiber impact HbS polymerization through a coupled interaction network. The overall results demonstrate a subtle role of dynamics and electrostatics in the polymer formation and provide insights about interaction-linkage in HbS fiber assembly.  相似文献   
3.
An anatomically accurate human upper airway model was constructed from multiple magnetic resonance imaging axial scans. This model was used to conduct detailed Computational Fluid Dynamics (CFD) simulations during expiration, to investigate the fluid flow in the airway regions where obstruction could occur. An identical physical model of the same airway was built using stereo lithography. Pressure and velocity measurements were conducted in the physical model. Both simulations and experiments were performed at a peak expiratory flow rate of 200 L/min. Several different numerical approaches within the FLUENT commercial software framework were used in the simulations; unsteady Large Eddy Simulation (LES), steady Reynolds-Averaged Navier-Stokes (RANS) with two-equation turbulence models (i.e. k?ε, standard k?ω, and k?ω Shear Stress Transport (SST)) and with one-equation Spalart–Allmaras model. The CFD predictions of the average wall static pressures at different locations along the airway wall were favorably compared with the experimental data. Among all the approaches, standard k?ω turbulence model resulted in the best agreement with the static pressure measurements, with an average error of ~20% over all ports. The highest positive pressures were observed in the retroglossal regions below the epiglottis, while the lowest negative pressures were recorded in the retropalatal region. The latter is a result of the airflow acceleration in the narrow retropalatal region. The largest pressure drop was observed at the tip of the soft palate. This location has the smallest cross section of the airway. The good agreement between the computations and the experimental results suggest that CFD simulations can be used to accurately compute aerodynamic flow characteristics of the upper airway.  相似文献   
4.
Gram-negative ‘superbugs’ such as New Delhi metallo-beta-lactamase-1 (bla NDM-1) producing pathogens have become world’s major public health threats. Development of molecular strategies that can rehabilitate the ‘old antibiotics’ and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMs) that restore the antibacterial efficacy (enhancement by >80-1250 fold) of tetracycline antibiotics towards bla NDM-1 Klebsiella pneumonia and bla NDM-1 Escherichia coli clinical isolates. Organismic studies showed that bacteria had an increased and faster uptake of tetracycline in the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover, bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards bla NDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs.  相似文献   
5.
The yeast Saccharomyces cerevisiae is a widely used model organism for studying cell biology, metabolism, cell cycle and signal transduction. Many regulatory pathways are conserved between this yeast and humans, and it is therefore possible to study pathways that are involved in disease development in a model organism that is easy to manipulate and that allows for detailed molecular studies. Here, we briefly review pathways involved in lipid metabolism and its regulation, the regulatory network of general metabolic regulator Snf1 (and its human homologue AMPK) and the proteostasis network with its link to stress and cell death. All the mentioned pathways can be used as model systems for the study of homologous pathways in human cells and a failure in these pathways is directly linked to several human diseases such as the metabolic syndrome and neurodegeneration. We demonstrate how different yeast pathways are conserved in humans, and we discuss the possibilities of using the systems biology approach to study and compare the pathways of relevance with the objective to generate hypotheses and gain new insights.  相似文献   
6.
Nutrient sensing and coordination of metabolic pathways are crucial functions for all living cells, but details of the coordination under different environmental conditions remain elusive. We therefore undertook a systems biology approach to investigate the interactions between the Snf1 and the target of rapamycin complex 1 (TORC1) in Saccharomyces cerevisiae. We show that Snf1 regulates a much broader range of biological processes compared with TORC1 under both glucose‐ and ammonium‐limited conditions. We also find that Snf1 has a role in upregulating the NADP+‐dependent glutamate dehydrogenase (encoded by GDH3) under derepressing condition, and therefore may also have a role in ammonium assimilation and amino‐acid biosynthesis, which can be considered as a convergence of Snf1 and TORC1 pathways. In addition to the accepted role of Snf1 in regulating fatty acid (FA) metabolism, we show that TORC1 also regulates FA metabolism, likely through modulating the peroxisome and β‐oxidation. Finally, we conclude that direct interactions between Snf1 and TORC1 pathways are unlikely under nutrient‐limited conditions and propose that TORC1 is repressed in a manner that is independent of Snf1.  相似文献   
7.
The simultaneous utilization of efficient respiration and inefficient fermentation even in the presence of abundant oxygen is a puzzling phenomenon commonly observed in bacteria, yeasts, and cancer cells. Despite extensive research, the biochemical basis for this phenomenon remains obscure. We hypothesize that the outcome of a competition for membrane space between glucose transporters and respiratory chain (which we refer to as economics of membrane occupancy) proteins influences respiration and fermentation. By incorporating a sole constraint based on this concept in the genome‐scale metabolic model of Escherichia coli, we were able to simulate respiro‐fermentation. Further analysis of the impact of this constraint revealed differential utilization of the cytochromes and faster glucose uptake under anaerobic conditions than under aerobic conditions. Based on these simulations, we propose that bacterial cells manage the composition of their cytoplasmic membrane to maintain optimal ATP production by switching between oxidative and substrate‐level phosphorylation. These results suggest that the membrane occupancy constraint may be a fundamental governing constraint of cellular metabolism and physiology, and establishes a direct link between cell morphology and physiology.  相似文献   
8.
9.
Background: Desmoplastic small round cell tumor (DSRCT) is an aggressive malignant tumor commonly found in young men; most occurs in the abdominal cavity. Here we conducted an in-depth analysis of a pregnant patient in our hospital and explored all the case information in the literature on small round cell carcinoma of women. Case presentation: A 27-year-old pregnant woman underwent tumor resection in our hospital at 29 weeks gestational age for a large progressive shoulder lump. The postoperative pathology showed that the mass was a DSRCT. Genetic testing found no fusion gene. At 36 weeks gestation, a painful mass was found in the breast and proved to be a metastatic focus of the desmoplastic small round cell tumor. Twenty days after a successful cesarean section at 40 weeks gestation, she received the VAC-IE chemotherapy regimen, successfully completed the first course, but when awaiting the next chemotherapy, unfortunately, the patient died during follow-up due to tumor recurrence and metastasis. Conclusion: The treatment of DSRCT in pregnant women requires a multidisciplinary consultation, and the treatment and examination during pregnancy are subject to many constraints, which may have a negative impact on the patient’s prognosis. Also, a review of the literature found that there is still no standard treatment protocol for DSRCT, and its prognosis in female patients is independent of age and tissue origin.  相似文献   
10.
The importance of regulatory control in metabolic processes is widely acknowledged, and several enquiries (both local and global) are being made in understanding regulation at various levels of the metabolic hierarchy. The wealth of biological information has enabled identifying the individual components (genes, proteins, and metabolites) of a biological system, and we are now in a position to understand the interactions between these components. Since phenotype is the net result of these interactions, it is immensely important to elucidate them not only for an integrated understanding of physiology, but also for practical applications of using biological systems as cell factories. We present some of the recent “-omics” approaches that have expanded our understanding of regulation at the gene, protein, and metabolite level, followed by analysis of the impact of this progress on the advancement of metabolic engineering. Although this review is by no means exhaustive, we attempt to convey our ideology that combining global information from various levels of metabolic hierarchy is absolutely essential in understanding and subsequently predicting the relationship between changes in gene expression and the resulting phenotype. The ultimate aim of this review is to provide metabolic engineers with an overview of recent advances in complementary aspects of regulation at the gene, protein, and metabolite level and those involved in fundamental research with potential hurdles in the path to implementing their discoveries in practical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号