首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   4篇
  10篇
  2021年   1篇
  2015年   1篇
  2011年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Murray  T. E.  Gottgens  J. F. 《Hydrobiologia》1997,345(1):39-44
Isotopes like 210Pb and 137Cs are effectivetools for determining chronology in lake sediments. Once the chronology is established, environmentalchanges in lakes can be investigated, and the causesfor those changes can often be inferred. 210Pband 137Cs profiles were constructed for thesediments of Crystal Lake, Connecticut, USA. Thegeochronology was used to determine the historicalchanges in organic matter and P accumulationin the sediment. Those profiles showed twosignificant periods of sedimentation which correlatewith major precipitation events. DecreasingP accumulation in the sediments of the lakein the last decade was also correlated with increasingeutrophication as documented by increases inepilimnetic P and decreases intransparency.  相似文献   
2.
3.
Long-term GIS-based records of habitat changes in a Lake Erie coastal marsh   总被引:6,自引:0,他引:6  
Great Lakes wetlands have lost much of their historical extent, structure and function. Their transformation was influenced by a number of factors acting over a period of decades including modifications in the basin's hydrology (watershed drainage, dikes, lake levels), biology (exotic species), geology (sediment transport and composition), and chemistry (water quality). The relative importance of each of these catalysts likely varied from region to region and depended on pre-settlement conditions and natural variability in the marshes, both generally unknown. We applied Geographic Information Systems (GIS) technology to a 120-year record (1872–1991) of images of a 2000-ha marsh system along the southwestern shore of Lake Erie, Ohio, USA. Long-term variability in aggregate characteristics of wetland vegetation was linked with environmental changes and human impact in three regions representing (1) a naturally existing open marsh with the lowest relative topograhical elevation, (2) an open marsh with a protected exposure to the lake and higher elevation, and (3) a diked marsh with manipulated water levels. The deep, open marsh lost half of its emergents, and a third of its patchiness and edge habitat in the early 1900s, when severe watershed degradations accompanied relatively low Lake Erie water levels. Nearly all remaining emergents were eliminated between 1940 and 1991 in this open marsh, following progressively higher lake levels. In the protected open marsh, the extent of emergents fluctuated with lake levels until 1977, and declined severely since then during sustained high lake levels. Habitat parameters varied little until recent decades, but declined markedly thereafter. The diked marsh maintained pre-1900 conditions for emergent plants, patchiness, and habitat edge; variability was linked to breached dikes and the presence/absence of marsh management. No landward re-establishment of the entire marsh complex since 1873 was evident on the 10 images studied. We propose the interaction of three forcing functions as the principal mechanism controlling the historical and current distribution of aquatic plants in southwestern Lake Erie marshes. These factors, collectively referred to as the Landward Advance Paradigm (LAP), include (1) the restricted ability of the marshes to advance landward, (2) sustained above-average lake levels, and (3) the presence of carp ( Cyprinus carpio) in wetlands with silt and clay sediments. Management focused on enhancing the role of Lake Erie wetlands should consider these landscape-level alterations and attempt to maximize wetland functions within the context of the LAP.  相似文献   
4.
5.
Freshwater marshes are well‐known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH4) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwater marsh where vertical gaseous [carbon dioxide (CO2) and CH4] and lateral hydrologic fluxes (dissolved and particulate organic carbon) have been simultaneously measured for multiple years (2011–2013). Carbon accumulation in the sediments suggested that the marsh was a long‐term carbon sink and accumulated ~96.9 ± 10.3 (±95% CI) g C m?2 yr?1 during the last ~50 years. However, abnormal climate conditions in the last 3 years turned the marsh to a source of carbon (42.7 ± 23.4 g C m?2 yr?1). Gross ecosystem production and ecosystem respiration were the two largest fluxes in the annual carbon budget. Yet, these two fluxes compensated each other to a large extent and led to the marsh being a CO2 sink in 2011 (?78.8 ± 33.6 g C m?2 yr?1), near CO2‐neutral in 2012 (29.7 ± 37.2 g C m?2 yr?1), and a CO2 source in 2013 (92.9 ± 28.0 g C m?2 yr?1). The CH4 emission was consistently high with a three‐year average of 50.8 ± 1.0 g C m?2 yr?1. Considerable hydrologic carbon flowed laterally both into and out of the marsh (108.3 ± 5.4 and 86.2 ± 10.5 g C m?2 yr?1, respectively). In total, hydrologic carbon fluxes contributed ~23 ± 13 g C m?2 yr?1 to the three‐year carbon budget. Our findings highlight the importance of lateral hydrologic inflows/outflows in wetland carbon budgets, especially in those characterized by a flow‐through hydrologic regime. In addition, different carbon fluxes responded unequally to climate variability/anomalies and, thus, the total carbon budgets may vary drastically among years.  相似文献   
6.
The Pantanal is a 140,000 km2 floodplain wetland stretching acrosswestern Brazil and parts of Bolivia and Paraguay. Gold mining withmercury (Hg) amalgamation has thrived since 1980 along its northern rim. We quantified Hg accumulation in sediment cores (N = 5) and food chainsin this general region of the northern Pantanal and in a reference region,200 km deeper into the wetland (Acurizal). Cores were dated with210Pb and 137Cs using direct gamma-assay. Total Hg wasanalyzed by cold-vapor atomic fluorescence using a gold-meshpre-concentration trap. Average pre-1940 Hg accumulation in cores wasnot significantly different (N = 5, p= 0.14) between both regions andcomparable with rates calculated for global reference sites. Post gold-rushHg (post-1980) deposition averaged 55 ± 11.3 g m-2yr-1 in the northern impacted region and was more than 1.5 timeshigher than the post-1980 rate in Acurizal, implying a regional Hg effectof gold mining. Post-1980 Hg accumulation in Acurizal, in turn, was 2.1times the rate reported for a global reference during that time period,suggesting an additional basin-wide effect over such reference sites. Bycombining our core data with assessments of the size of the impacted areaand the amount of Hg released to the region since 1980, we estimated thatonly 2–8% of this Hg was recovered as a sedimentary signal. Theremainder of the Hg was lost to the atmosphere, downstream areas, orstored in biota. Hg concentrations in surface sediments in the northernPantanal (45.5 ± 5.5 ng gdry -1) were significantlyhigher than those in our reference region (29.1 ± 0.7ng gdry -1). Hg levels in primary producers were alsoelevated in the northern Pantanal. Eichhornia crassipes rootscontained 2.7–3.0 times more mercury than shoots in both regions and Salvinia auriculata, suggested as a biological monitor for Hg pollution,contained almost four times more mercury in the northern Pantanal (90.7± 9.1 ng gdry -1) than in Acurizal (24.5 ± 3.3ng gdry -1). Plant grazers and scavengers, such as apple snails(Pomacea sp.) and adult water beetles (Fam. Hydrophilidae), werelow in Hg, confirming previous data showing that the channeling of mercuryfrom lower to higher trophic levels along herbivorous links was inefficientcompared to transfer along carnivorous links. Collections of 12–16individuals of four species of Characidae (Aphyocharax sp., Tetragonopterus sp., Serrasalmus spiropleura and Pygocentrisnattereri) in both regions showed elevated Hg body burdens in bothpiranhas S. spiropleura and P. nattereri from the northernPantanal (149.9 ± 84.2 and 302.2 ± 159.1ng gdry -1, respectively). Fish length for each species was notstatistically different between regions. P. nattereri length correlatedsignificantly (p<0.001) with Hg content in both regions, but the slopeof the regression in the northern Pantanal was 2.6 times the slope for theAcurizal collection, indicating an elevated rate of biomagnification in theHg-impacted region. Signals of Hg use in mining can be quantified insediment core chronologies and biological tissues, although species atdifferent trophic levels show dissimilar impacts. Mechanisms involved in Hgmagnification along food chains deserve more attention, particularly intropical regions where the threat of chronic exposure to this neurotoxinmay have the greatest implications for biodiversity.  相似文献   
7.
8.
9.
In spite of its size and biological significance, we know little about the ecology of the Pantanal, a 140,000 km2 floodplain in west-central Brazil. Increasing human pressures make this lack of understanding particularly critical. Using transects and 1 m2 circular plots, we documented floristic composition and interacting-environmental conditions associated with littoral herbaceous vegetation along inundation gradients at two ecologically-distinct sites in the Pantanal. We recorded water depth and percent cover for each species in Baía Piuval, a bay in the Bento Gomes River (Mato Grosso), and in a bay in the Acurizal Reserve (Mato Grosso do Sul). Baía Piuval and Acurizal plots contained a total of 22 and 18 macrophyte species, respectively. At both sites Eichhornia azurea and Salvinia auriculata occurred most frequently as dominant or co-dominant species. Chi2 analysis, used to quantify zonations along depth gradients, generated four different groups of species ( p < 0.05) for Baía Piuval. For Acurizal, two significantly different groups ( p < 0.05) occurred with an intermediate assemblage of species that could be assigned to either group. Canonical correspondence analysis, used to analyze species distributions, showed a pattern consistent with the Chi2 results for Baía Piuval but not for Acurizal. Higher species richness and diversity occurred where dry season and low water levels coincided and richness was generally highest in proximal plots where water depths were lowest. Our results are consistent with the few other plant ecological studies reported for the Pantanal. This study can be considered additive to needed baseline data on biota and ecology of this region of South America.This revised version was published online in March 2005 with corrections to the issue cover date.  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号