首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9587篇
  免费   933篇
  国内免费   1篇
  2021年   123篇
  2020年   81篇
  2019年   113篇
  2018年   104篇
  2017年   82篇
  2016年   139篇
  2015年   261篇
  2014年   280篇
  2013年   364篇
  2012年   442篇
  2011年   453篇
  2010年   313篇
  2009年   266篇
  2008年   401篇
  2007年   382篇
  2006年   358篇
  2005年   360篇
  2004年   368篇
  2003年   334篇
  2002年   342篇
  2001年   219篇
  2000年   163篇
  1999年   180篇
  1998年   130篇
  1997年   109篇
  1996年   115篇
  1995年   88篇
  1994年   82篇
  1993年   96篇
  1992年   158篇
  1991年   145篇
  1990年   146篇
  1989年   142篇
  1988年   125篇
  1987年   127篇
  1986年   140篇
  1985年   153篇
  1984年   121篇
  1983年   116篇
  1982年   101篇
  1981年   104篇
  1980年   110篇
  1979年   84篇
  1978年   92篇
  1977年   106篇
  1976年   76篇
  1975年   75篇
  1974年   104篇
  1973年   86篇
  1972年   86篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Gordon Murray 《CMAJ》1953,69(3):296-299
  相似文献   
3.
The molecular basis of the substrate specificity of Clostridium histolyticum beta-collagenase was investigated using a combinatorial method. An immobilized positional peptide library, which contains 24,000 sequences, was constructed with a 7-hydroxycoumarin-4-propanoyl (Cop) fluorescent group attached at the N terminus of each sequence. This immobilized peptide library was incubated with C. histolyticum beta-collagenase, releasing fluorogenic fragments in the solution phase. The relative substrate specificity (k(cat)/K(m)) for each member of the library was determined by measuring fluorescence intensity in the solution phase. Edman sequencing was used to assign structure to subsites of active substrate mixtures. Collectively, the substrate preference for subsites (P(3)-P(4)') of C. histolyticum beta-collagenase was determined. The last position on the C-terminal side in which the identity of the amino acids affects the activity of the enzyme is P(4)', and an aromatic side chain is preferred in this position. The optimal P(1)'-P(3)' extended substrate sequence is P(1)'-Gly/Ala, P(2)'-Pro/Xaa, and P(3)'-Lys/Arg/Pro/Thr/Ser. The Cop group in either the P(2) or P(3) position is required for a high substrate activity with C. histolyticum beta-collagenase. S(2) and S(3) sites of the protease play a dominant role in fixing the substrate specificity. The immobilized peptide library proved to be a powerful approach for assessing the substrate specificity of C. histolyticum beta-collagenase, so it may be applied to the study of other proteases of interest.  相似文献   
4.
Microbial diversity and distribution are topics of intensive research. In two companion papers in this issue, we describe the results of the Cariaco Microbial Observatory (Caribbean Sea, Venezuela). The Basin contains the largest body of marine anoxic water, and presents an opportunity to study protistan communities across biogeochemical gradients. In the first paper, we survey 18S ribosomal RNA (rRNA) gene sequence diversity using both Sanger- and pyrosequencing-based approaches, employing multiple PCR primers, and state-of-the-art statistical analyses to estimate microbial richness missed by the survey. Sampling the Basin at three stations, in two seasons, and at four depths with distinct biogeochemical regimes, we obtained the largest, and arguably the least biased collection of over 6000 nearly full-length protistan rRNA gene sequences from a given oceanographic regime to date, and over 80 000 pyrosequencing tags. These represent all major and many minor protistan taxa, at frequencies globally similar between the two sequence collections. This large data set provided, via the recently developed parametric modeling, the first statistically sound prediction of the total size of protistan richness in a large and varied environment, such as the Cariaco Basin: over 36 000 species, defined as almost full-length 18S rRNA gene sequence clusters sharing over 99% sequence homology. This richness is a small fraction of the grand total of known protists (over 100 000–500 000 species), suggesting a degree of protistan endemism.  相似文献   
5.
6.
  1. Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co‐occurring plant species.
  2. Using a Holarctic dataset of exposed‐feeding and shelter‐building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.
  3. Our plant–caterpillar network data derived from plot‐based samplings at three different continents included >28,000 individual caterpillar–plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.
  4. The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed‐feeding and shelter‐building caterpillars.
  5. Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host‐specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large‐scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.
  相似文献   
7.
We have previously demonstrated that a mixture of bradykinin and lysylbradykinin is generated in nasal secretions during the immediate allergic response to allergen. The present studies were performed to determine whether glandular kallikrein plays a role in kinin formation during the allergic reaction. Allergic individuals (n = 7) and nonallergic controls (n = 7) were challenged intranasally with appropriate allergen, and nasal lavages obtained before and after challenge were assayed for immunoreactive glandular kallikrein as well as for histamine, kinins, and N-alpha-tosyl-L-arginine methyl esterase (TAME-esterase) activity. The increase in postchallenge immunoreactive glandular kallikrein levels above baseline was significantly greater (p less than 0.01) for the allergic group (16.3 +/- 14 ng/ml; means +/- SD) than for the nonallergic controls (1.0 +/- 1.9 ng/ml). Increased levels of immunoreactive glandular kallikrein correlated with increases in kinins, histamine, and TAME-esterase activity and with the onset of clinical symptoms. Characterization of immunoreactive glandular kallikrein purified from postchallenge lavages by immunoaffinity chromatography confirmed the identity of this material as an authentic glandular kallikrein on the basis of its inhibition by protease inhibitors and by monospecific antibody to tissue kallikrein, its chromatographic behavior on gel filtration, and its ability to generate lysylbradykinin from highly purified human low m.w. kininogen. The specific activity of this purified material, in terms of kinin generation from kininogen, was very similar to that for authentic glandular kallikrein, suggesting that most if not all of the immunoreactive material purified from nasal lavages represented active enzyme. Inhibition studies by using pooled postchallenge lavages suggest that the majority of the kinin generating activity in these samples was due to glandular kallikrein. We conclude, therefore, that glandular kallikrein is secreted during the allergic response and can contribute to the formation of the lysylbradykinin produced during the allergic reaction.  相似文献   
8.
A method for the quantitative assay of nuclease activity in crude cell lysates after isoelectric focusing (IEF) in polyacrylamide slab gels is described. After IEF, an agarose overlay gel containing DNA is placed on the IEF gel and the nuclease activity quantified by the loss of ethidium bromide fluorescence of the DNA. With this method a linear response was obtained for 1 to 10 ng of DNase I. Various methods of pH equilibration after IEF were also evaluated. The use of a high buffer concentration in the overlay gel is recommended to control the pH during the enzyme reaction. An analytical solution for the diffusion of enzymes from the IEF gel to the overlay gel is also presented and an equation that may be used to choose optimum times for transfer of the enzyme from the IEF gel to the overlay gel is given.  相似文献   
9.
A combination of DIP-thrombin and either PMA (50 ng/ml) or dioctanoyl glycerol stimulates DNA synthesis in serum free cultures of NIL hamster cells similar to that previously reported for the combinatory effect of DIP-thrombin and gamma-thrombin. Thus, PMA or dioctanoyl glycerol appears to generate signals normally stimulated by gamma-thrombin interaction with cells. This stimulation was not observed when cells were treated with DIP-thrombin and 4-beta-phorbol or 4-alpha-phorbol 12,13-didecanoate. Therefore, it appears that this effect is mediated through activation of protein kinase C and that this activation plays an important role in thrombin mitogenesis.  相似文献   
10.
The proteolytic activity directed against apolipoprotein A-II (apo-A-II) which is released from human blood polymorphonuclear cells (PMN) when they are incubated with human plasma high-density lipoprotein-3 (HDL3) was studied to assess the properties and site specificity of the enzyme. When 125I-apo-A-II-labeled HDL3 was incubated with the PMN protease at 37 degrees C, a complete cleavage of apo-A-II was observed which paralleled the formation of bands of approximately 11,000 and 7,000 daltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 7,000-dalton component had the following N-terminal sequence: NH2-Thr-Asp-Tyr-Gly-Lys-Asp-Leu-Met-Glu-Lys. This corresponds to residues 19 through 28 of the intact apo-A-II monomer. Methoxysuccinyl (MeO-Suc)-Ala-Ala-Pro-Val-chloromethylketone-(CH2Cl) caused a 90% inhibition of apo-A-II hydrolysis at the highest concentration tested (6 X 10(-4)M). Besides apo-A-II, the PMN enzyme also hydrolyzed a synthetic substrate, MeO-Suc-Ala-Ala-Pro-Val-4-nitroanilide and its 4-methylcoumaryl-7-amide analogue. The protease appeared to have a mass of 28,000 daltons as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the [3H]diisopropylfluorophosphate-labeled PMN enzyme. That the PMN enzyme which cleaves apo-A-II is an elastase was derived from the following criteria: 1) cleavage at the Val-X bond in apo-A-II and in the two synthetic substrates studied; 2) prevention of the cleavage by MeO-Suc-Ala-Ala-Pro-Val-CH2Cl, a known specific elastase inhibitor; and 3) a mass comparable to that reported for a pure PMN elastase. These studies establish that apolipoproteins can be suitable substrates for enzymes of the elastase family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号