首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   5篇
  2013年   3篇
  2012年   3篇
  2011年   8篇
  2010年   3篇
  2008年   8篇
  2007年   3篇
  2006年   8篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   5篇
  2001年   7篇
  2000年   2篇
  1998年   2篇
  1991年   1篇
  1990年   1篇
  1968年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
1.
2.
The Drosophila Hedgehog protein and its vertebrate counterpart Sonic hedgehog are required for a wide variety of patterning events throughout development. Hedgehog proteins are secreted from cells and undergo autocatalytic cleavage and cholesterol modification to produce a mature signaling domain. This domain of Sonic hedgehog has recently been shown to acquire an N-terminal acyl group in cell culture. We have investigated the in vivo role that such acylation might play in appendage patterning in mouse and Drosophila; in both species Hedgehog proteins define a posterior domain of the limb or wing. A mutant form of Sonic hedgehog that cannot undergo acylation retains significant ability to repattern the mouse limb. However, the corresponding mutation in Drosophila Hedgehog renders it inactive in vivo, although it is normally processed. Furthermore, overexpression of the mutant form has dominant negative effects on Hedgehog signaling. These data suggest that the importance of the N-terminal cysteine of mature Hedgehog in patterning appendages differs between species.  相似文献   
3.
Hedgehog signaling is required for multiple aspects of brain development, including growth, the establishment of both dorsal and ventral midline patterning and the generation of specific cell types such as oligodendrocytes and interneurons. To identify more precisely when during development hedgehog signaling mediates these events, we directed the removal of hedgehog signaling within the brain by embryonic day 9 of development, using a FoxG1(Cre) driver line to mediate the removal of a conditional smoothened null allele. We observed a loss of ventral telencephalic patterning that appears to result from an initial lack of specification of these structures rather than by changes in proliferation or cell death. A further consequence of the removal of smoothened in these mice is the near absence of both oligodendrocytes and interneurons. Surprisingly, the dorsal midline appears to be patterned normally in these mutants. Together with previous analyses, the present results demonstrate that hedgehog signaling in the period between E9.0 and E12 is essential for the patterning of ventral regions and the generation of cell types that are thought to largely arise from them.  相似文献   
4.
5.
6.
A key obstacle to understanding neural circuits in the?cerebral cortex is that of unraveling the diversity of GABAergic interneurons. This diversity poses general questions for neural circuit analysis: how are these interneuron cell types generated and assembled into stereotyped local circuits and how do they differentially contribute to circuit operations that underlie cortical functions ranging from perception to cognition? Using genetic engineering in mice, we have generated and characterized approximately 20 Cre and inducible CreER knockin driver lines that reliably target major classes and lineages of GABAergic neurons. More select populations are captured by intersection of Cre and Flp drivers. Genetic targeting allows reliable identification, monitoring, and manipulation of cortical GABAergic neurons, thereby enabling a systematic and comprehensive analysis from cell fate specification, migration, and connectivity, to their functions in network dynamics and behavior. As such, this approach will accelerate the study of GABAergic circuits throughout the mammalian brain.  相似文献   
7.
8.
9.
An understanding of the diversity of cortical GABAergic interneurons is critical to understand the function of the cerebral cortex. Recent data suggest that neurons expressing three markers, the Ca2+-binding protein parvalbumin (PV), the neuropeptide somatostatin (SST), and the ionotropic serotonin receptor 5HT3a (5HT3aR) account for nearly 100% of neocortical interneurons. Interneurons expressing each of these markers have a different embryological origin. Each group includes several types of interneurons that differ in morphological and electrophysiological properties and likely have different functions in the cortical circuit. The PV group accounts for ~40% of GABAergic neurons and includes fast spiking basket cells and chandelier cells. The SST group, which represents ~30% of GABAergic neurons, includes the Martinotti cells and a set of neurons that specifically target layerIV. The 5HT3aR group, which also accounts for ~30% of the total interneuronal population, is heterogeneous and includes all of the neurons that express the neuropeptide VIP, as well as an equally numerous subgroup of neurons that do not express VIP and includes neurogliaform cells. The universal modulation of these neurons by serotonin and acetylcholine via ionotropic receptors suggests that they might be involved in shaping cortical circuits during specific brain states and behavioral contexts.  相似文献   
10.
Numerous lines of evidence suggest that Notch signaling plays a pivotal role in controlling the production of neurons from progenitor cells. However, most experiments have relied on gain-of-function approaches because perturbation of Notch signaling results in death prior to the onset of neurogenesis. Here, we examine the requirement for Notch signaling in the development of the striatum through the analysis of different single and compound Notch1 conditional and Notch3 null mutants. We find that normal development of the striatum depends on the presence of appropriate Notch signals in progenitors during a critical window of embryonic development. Early removal of Notch1 prior to neurogenesis alters early-born patch neurons but not late-born matrix neurons in the striatum. We further show that the late-born striatal neurons in these mutants are spared as a result of functional compensation by Notch3. Notably, however, the removal of Notch signaling subsequent to cells leaving the germinal zone has no obvious effect on striatal organization and patterning. These results indicate that Notch signaling is required in neural progenitor cells to control cell fate in the striatum, but is dispensable during subsequent phases of neuronal migration and differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号