首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 171 毫秒
1
1.
Herein we describe the design and synthesis of a novel series of potent thienopyrimidine P2Y12 inhibitors and the negative impact protein binding has on the inhibition of platelet aggregation.  相似文献   
2.
Lethal Toxin Neutralizing Factor (LTNF) obtained from Opossum serum (Didephis virginiana) is known to exhibit toxin-neutralizing activity for envenomation caused by animals, plants and bacteria. Small synthetic peptide- LT10 (10mer) derived from N-terminal fraction of LTNF exhibit similar anti-lethal and anti-allergic property. In our in silico study, we identified Insulin Degrading Enzyme (IDE) as a potential target of LT10 peptide followed by molecular docking and molecular dynamic (MD) simulation studies which revealed relatively stable interaction of LT10 peptide with IDE. Moreover, their detailed interaction analyses dictate IDE-inhibitory interactions of LT10 peptide. This prediction ofLT10 peptide as a novel putative IDE-inhibitor suggests its possible role in anti-diabetic treatment since IDE- inhibitors are known to assist treatment of Diabetes mellitus by enhancing insulin signalling. Furthermore, series of structure based peptidomimetics were designed from LT10 peptide and screened for their inhibitory interactions which ultimately led to a small set of peptidomimetic inhibitors of IDE. These peptidomimetic thus might provide a new class of IDE-inhibitors, those derived from LT10 peptide.  相似文献   
3.
Digitalis purpurea L. (Scrophulariaceae; Foxglove) is a source of cardiotonic glycosides such as digitoxin and digoxin which are commercially applied in the treatment to strengthen cardiac diffusion and to regulate heart rhythm. This investigation deals with in vitro propagation and elicited production of cardiotonic glycosides digitoxin and digoxin in shoot cultures of D. purpurea L. In vitro germinated seedlings were used as a primary source of explants. Multiple shoot formation was achieved for three explant types (nodal, internodal, and leaf) cultured on Murashige and Skoog (MS) medium with several treatments of cytokinins (6-benzyladenine—BA; kinetin—Kin; and thidiazuron—TDZ) and auxins (indole-3-acetic acid—IAA; α-naphthaleneacetic acid—NAA; and 2,4-dichlorophenoxy acetic acid—2,4-D). Maximum multiple shoots (12.7?±?0.6) were produced from nodal explants on MS?+?7.5 μM BA. Shoots were rooted in vitro on MS containing 15 μM IAA. Rooted plantlets were successfully acclimatized. To further maintain the multiple shoot induction, mother tissue was cut into four equal parts and repeatedly sub-cultured on fresh shoot induction liquid medium after each harvest. On adaptation of this strategy, an average of 18 shoots per explant could be produced. This strategy was applied for the production of biomass and glycosides digitoxin and digoxin in shoot cultures on MS medium supplemented with 7.5 μM BA and several treatments with plant growth regulators, incubation period, abiotic (salicylic acid, mannitol, sorbitol, PEG-6000, NaCl, and KCl), biotic (Aspergillus niger, Helminthosporium sp., Alternaria sp., chitin, and yeast extract) elicitors, and precursors (progesterone, cholesterol, and squalene). The treatment of KCl, mycelial mass of Helminthosporium sp., and progesterone were highly effective for the production of cardenolides. In the presence of progesterone (200 to 300 mg/l), digitoxin and digoxin accumulation was enhanced by 9.1- and 11.9-folds respectively.  相似文献   
4.
Terpene trilactones (TTLs) are the main bioactive constituents of Ginkgo biloba used for the preparation of drugs for several ailments. Flavonoid glycosides (FGs) are the significant group of compounds found in Ginkgo leaves used in food and healthcare products. The variation in the content of bioactive constituents, as well as antioxidant activity, with respect to change in altitude and the time of sample collection was investigated. The amount of TTLs varied from 0.218-0.709% w/w, whereas FGs were observed in the range of 0.130-0.209% w/w. Ginkgolides J and A showed significant variation (p ≤ 0.05) with the change in altitude, while other components remained more or less unaffected. The amount of TTLs and FGs were not affected significantly by the time of sample collection. The antioxidant capacity (by using DPPH, ABTS, and FRAP assays) of ginkgo extracts was highly dependent on the altitude, and was at maximum in the samples collected from 1000-2000 m, followed by the samples collected from altitudes lower than 1000 m and higher than 2000 m. Thus, Ginkgo harvested from 1000-2000 m of altitudinal range irrespective of the season could provide better nutraceutical formulations, whereas that from below 1000 m may yield a terpene trilactone-enriched fraction.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号