首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   5篇
  2023年   1篇
  2019年   1篇
  2018年   2篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有45条查询结果,搜索用时 187 毫秒
1.
The genes for cellobiose utilization are normally cryptic in Escherichia coli. The cellobiose system was used as a model to understand the process by which silent genes are maintained in microbial populations. Previously reported was (1) the isolation of a mutant strain that expresses the cellobiose-utilization (Cel) genes and (2) that expression of those genes allows utilization of three beta- glucoside sugars: cellobiose, arbutin, and salicin. The Cel gene cluster has now been cloned from that mutant strain. In the course of locating the Cel genes within the cloned DNA segment, it was discovered that inactivation of the Cel-encoded hydrolase rendered the host strain sensitive to all three beta-glucosides as potent inhibitors. This sensitivity arises from the accumulation of the phosphorylated beta- glucosides. Because even the fully active genes conferred some degree of beta-glucoside sensitivity, the effects of cellobiose on a series of five Cel+ mutants of independent origin were investigated. Although each of those strains utilizes cellobiose as a sole carbon and energy source, cellobiose also acts as a potent inhibitor that reduces the growth rate on glycerol 2.5-16.5-fold. On the other hand, wild-type strains that cannot utilize cellobiose are not inhibited. The observation that the same compound can serve either as a nutrient or as an inhibitor suggests that, under most conditions in which cellobiose will be present together with other resources, there is a strong selective advantage to having the cryptic (Cel0) allele. In those environments in which cellobiose is the sole, or the best, resource, mutants that express the genes (Cel+) will have a strong selective advantage. It is suggested that temporal alternation between these two conditions is a major factor in the maintenance of these genes in E. coli populations. This alternation of environments and fitnesses was predicted by the model for cryptic-gene maintenance that was previously published.   相似文献   
2.
3.
Although osteoporosis and its related fractures are common in patients with COPD, patients at high risk of fracture are poorly identified, and consequently, undertreated. Since there are no fracture prevention guidelines available that focus on COPD patients, we developed a clinical approach to improve the identification and treatment of COPD patients at high risk of fracture. We organised a round-table discussion with 8 clinical experts in the field of COPD and fracture prevention in the Netherlands in December 2013. The clinical experts presented a review of the literature on COPD, osteoporosis and fracture prevention. Based on the Dutch fracture prevention guideline, they developed a 5-step clinical approach for fracture prevention in COPD. Thereby, they took into account both classical risk factors for fracture (low body mass index, older age, personal and family history of fracture, immobility, smoking, alcohol intake, use of glucocorticoids and increased fall risk) and COPD-specific risk factors for fracture (severe airflow obstruction, pulmonary exacerbations and oxygen therapy). Severe COPD (defined as postbronchodilator FEV1 < 50% predicted) was added as COPD-specific risk factor to the list of classical risk factors for fracture. The 5-step clinical approach starts with case finding using clinical risk factors, followed by risk evaluation (dual energy X-ray absorptiometry and imaging of the spine), differential diagnosis, treatment and follow-up. This systematic clinical approach, which is evidence-based and easy-to-use in daily practice by pulmonologists, should contribute to optimise fracture prevention in COPD patients at high risk of fracture.  相似文献   
4.
5.
Kono M  Goletz PW  Crouch RK 《Biochemistry》2008,47(28):7567-7571
Rhodopsin is the photosensitive pigment in the rod photoreceptor cell. Upon absorption of a photon, the covalently bound 11- cis-retinal isomerizes to the all- trans form, enabling rhodopsin to activate transducin, its G protein. All -trans-retinal is then released from the protein and reduced to all -trans-retinol. It is subsequently transported to the retinal pigment epithelium where it is converted to 11- cis-retinol and oxidized to 11- cis-retinal before it is transported back to the photoreceptor to regenerate rhodopsin and complete the visual cycle. In this study, we have measured the effects of all -trans- and 11- cis-retinals and -retinols on the opsin's ability to activate transducin to ascertain their potentials for activating the signaling cascade. Only 11- cis-retinal acts as an inverse agonist to the opsin. All -trans-retinal, all -trans-retinol, and 11- cis-retinol are all agonists with all -trans-retinal being the most potent agonist and all -trans-retinol being the least potent. Taken as a whole, our study is consistent with the hypothesis that the steps in the visual cycle are optimized such that the rod can serve as a highly sensitive dim light receptor. All -trans-retinal is immediately reduced in the photoreceptor to prevent back reactions and to weaken its effectiveness as an agonist before it is transported out of the cell; oxidation of 11- cis-retinol occurs in the retinal pigment epithelium and not the rod photoreceptor cell because 11- cis-retinol can act as an agonist and activate the signaling cascade if it were to bind an opsin, effectively adapting the cell to light.  相似文献   
6.

Background

Bacterial respiratory tract infections, mainly caused by Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are among the leading causes of global mortality and morbidity. Increased resistance of these pathogens to existing antibiotics necessitates the search for novel targets to develop potent antimicrobials.

Result

Here, we report a proof of concept study for the reliable identification of potential drug targets in these human respiratory pathogens by combining high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics. Approximately 20% of all genes in these three species were essential for growth and viability, including 128 essential and conserved genes, part of 47 metabolic pathways. By comparing these essential genes to the human genome, and a database of genes from commensal human gut microbiota, we identified and excluded potential drug targets in respiratory tract pathogens that will have off-target effects in the host, or disrupt the natural host microbiota. We propose 249 potential drug targets, 67 of which are targets for 75 FDA-approved antimicrobials and 35 other researched small molecule inhibitors. Two out of four selected novel targets were experimentally validated, proofing the concept.

Conclusion

Here we have pioneered an attempt in systematically combining the power of high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics to discover potential drug targets at genome-scale. By circumventing the time-consuming and expensive laboratory screens traditionally used to select potential drug targets, our approach provides an attractive alternative that could accelerate the much needed discovery of novel antimicrobials.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-958) contains supplementary material, which is available to authorized users.  相似文献   
7.
Cytokines in plasmid form can act as potent adjuvants when co-administered with DNA vaccines, resulting in an enhanced immune response to the DNA-encoded antigen. This is true of interleukin-18 (IL-18), which has been shown to serve as an adjuvant in conjunction with certain DNA vaccines. To determine if the properties of IL-18 could be optimized for use as a DNA vaccine adjuvant, a model of IL-18/IL-18R binding was developed to identify variants of human IL-18 that were predicted to improve receptor interactions and potentially bioactivity. The linkage of mature IL-18 to a secretion signal sequence provided improved protein expression from mammalian cells and signal peptidase cleavage of this protein produced the authentic N-terminus. The IL-18 variant proteins secreted this way were bioactive, as demonstrated by their ability to induce interferon gamma (IFNgamma) expression by human peripheral blood mononuclear cells (PBMCs) and to bind to IL-18R, as demonstrated by BIAcore analysis. The IL-18 variants were inhibited by IL-18 binding protein (IL-18BP), the soluble inhibitor of IL-18, as measured by neutralization of the IFNgamma response in PBMCs. One variant, V11I/T63A, demonstrated increases both in bioactivity and mammalian cell expression as compared to native IL-18, indicating that this molecule may be particularly well suited for use as a DNA-encoded vaccine adjuvant.  相似文献   
8.
Regeneration of 11-cis retinal from all-trans retinol in the retinal pigment epithelium (RPE) is a critical step in the visual cycle. The enzyme(s) involved in this isomerization process has not been identified and both all-trans retinol and all-trans retinyl esters have been proposed as the substrate. This study is to determine the substrate of the isomerase enzyme or enzymatic complex. Incubation of bovine RPE microsomes with all-trans [(3)H]-retinol generated both retinyl esters and 11-cis retinol. Inhibition of lecithin retinol acyltransferase (LRAT) with 10-N-acetamidodecyl chloromethyl ketone (AcDCMK) or cellular retinol-binding protein I (CRBP) diminished the generation of both retinyl esters and 11-cis retinol from all-trans retinol. The 11-cis retinol production correlated with the retinyl ester levels, but not with the all-trans retinol levels in the reaction mixture. When retinyl esters were allowed to form prior to the addition of the LRAT inhibitors, a significant amount of isomerization product was generated. Incubation of all-trans [(3)H]-retinyl palmitate with RPE microsomes generated 11-cis retinol without any detectable production of all-trans retinol. The RPE65 knockout (Rpe65(-/-)) mouse eyecup lacks the isomerase activity, but LRAT activity remains the same as that in the wild-type (WT) mice. Retinyl esters in WT mice plateau at 8 weeks-of-age, but Rpe65(-/-) mice continue to accumulate retinyl esters with age (e.g., at 36 weeks, the levels are 20x that of WT). Our data indicate that the retinyl esters are the substrate of the isomerization reaction.  相似文献   
9.
Rpe65(-/-) mice produce minimal amounts of 11-cis-retinal, the ligand necessary for the formation of photosensitive visual pigments. Therefore, the apoprotein opsin in these animals has not been exposed to its normal ligand. The Rpe65(-/-) mice contain less than 0.1% of wild type levels of rhodopsin. Mass spectrometric analysis of opsin from Rpe65(-/-) mice revealed unusually high levels of phosphorylation in dark-adapted mice but no other structural alterations. Single flash and flicker electroretinograms (ERGs) from 1-month-old animals showed trace rod function but no cone response. B-wave kinetics of the single-flash ERG are comparable with those of dark-adapted wild type mice containing a full compliment of rhodopsin. Application (intraperitoneal injection) of 11-cis-retinal to Rpe65(-/-) mice increased the rod ERG signal, increased levels of rhodopsin, and decreased opsin phosphorylation. Therefore, exogenous 11-cis-retinal improves photoreceptor function by regenerating rhodopsin and removes constitutive opsin phosphorylation. Our results indicate that opsin, which has not been exposed to 11-cis-retinal, does not generate the activity generally associated with the bleached apoprotein.  相似文献   
10.
We report the genomic organization and deduced protein sequence of a cephalochordate member of the Otx homeobox gene family (AmphiOtx) and show its probable single-copy state in the genome. We also present molecular phylogenetic analysis indicating that there was single ancestral Otx gene in the first chordates which was duplicated in the vertebrate lineage after it had split from the lineage leading to the cephalochordates. Duplication of a C-terminal protein domain has occurred specifically in the vertebrate lineage, strengthening the case for a single Otx gene in an ancestral chordate whose gene structure has been retained in an extant cephalochordate. Comparative analysis of protein sequences and published gene expression patterns suggest that the ancestral chordate Otx gene had roles in patterning the anterior mesendoderm and central nervous system. These roles were elaborated following Otx gene duplication in vertebrates, accompanied by regulatory and structural divergence, particularly of Otx1 descendant genes.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号