首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   472篇
  免费   14篇
  2024年   1篇
  2023年   12篇
  2022年   12篇
  2021年   27篇
  2020年   10篇
  2019年   17篇
  2018年   12篇
  2017年   15篇
  2016年   20篇
  2015年   17篇
  2014年   32篇
  2013年   30篇
  2012年   32篇
  2011年   37篇
  2010年   22篇
  2009年   24篇
  2008年   27篇
  2007年   22篇
  2006年   22篇
  2005年   16篇
  2004年   11篇
  2003年   17篇
  2002年   13篇
  2001年   1篇
  2000年   4篇
  1999年   4篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1992年   3篇
  1991年   6篇
  1990年   6篇
  1989年   3篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1974年   1篇
  1963年   1篇
排序方式: 共有486条查询结果,搜索用时 328 毫秒
1.
2.
A mouse-mouse hybridoma cell line (167.4G5.3) was cultivated in a 1.5-L stirred-tank bioreactor under constant pH and dissolved oxygen concentration. The transient kinetics of cell growth, metabolism, and antibody production were followed by biochemical and flow cytometric methods. The cell-specific kinetic parameters (growth and metabolic rates) as well as cell size were constant throughout the exponential phase. Intracellular protein and RNA content followed a similar trend. Cell growth stopped when the glutamine in the medium was depleted. Glucose could not substitute for glutamine, as glucose consumption ceased after glutamine depletion. Ammonia and lactate production followed closely glutamine and glucose consumption, respectively. Alanine, glutamate, serine, and glycine were produced but other amino acids were consumed. The cells are estimated to obtain about 45% of the total energy from glycolysis, with the balance of the metabolic energy provided by oxidative phosphorylation. The antibody was produced at a constant rate in both the exponential and decline phases of growth. The intracellular antibody content of the cells remained relatively constant during the exponential phase of growth and decreased slightly afterwards.  相似文献   
3.
Summary This paper describes the use of a commercially available off-line gas sensing electrode for determination of ammonia and glutamine in cell culture media. The measurement technique was tested in different media preparations with different serum concentrations. The glutamine decomposition was studied as a function of pH for cell culture medium and the results were compared to those obtained by conventional methods,i.e., HPLC. Finally, glutamine and ammonia metabolism were studied during the cultivation of a hybridoma cell line.  相似文献   
4.
A murine hybridoma cell line (167.4G5.3) was cultivated in batch mode with varying inoculum cell densities using IMDM media of varying fetal bovine serum concentrations. It was observed that maximum cell concentrations as well as the amount of monoclonal antibody attainable in batch mode were dependent on the inoculum size. Specifically, cultures with lower inoculum size resulted in lower cell yield and lower antibody concentrations. However, in the range of 10(2) to 10(5) cells per ml, the initial cell density affected the initial growth rate by a factor of only 20%. Furthermore, specific monoclonal antibody production rates were independent of initial cell density and the serum concentration. Glutamine was the limiting nutrient for all the cultures, determining the extent of growth and the amount of antibody produced. Serum was essential for cell growth and cultures with initial cell concentrations up to 10(6) cells per ml could not grow without serum. However, when adapted, the cells could grow in a custom-made serum-free medium containing insulin, transferrin, ethanolamine, and selenium (ITES) supplements. The cells adapted to the ITES medium could grow with an initial growth rate slightly higher than in 1.25% serum and the growth rate showed an initial density dependency-inocula at 10(3) cells per ml grew 30% slower than those at 10(4) or 10(5). This difference in growth rate was decreased to 10% with the addition of conditioned ITES medium. The addition of conditioned media, however, did not improve the cell growth for serum-containing batches.  相似文献   
5.
The effects of dissolved oxygen concentration (DO) on hybridoma cell physiology were examined in a continuous stirred tank bioreactor with a murine hybridoma cell line (167.4G5.3). Dissolved oxygen concentration was varied between 0% and 100% air saturation. Cell growth and viability, carbohydrate, amino acid, and energy metabolism, oxygen uptake, and antibody production rates were investigated. Cell growth was inhibited at both high and low DO. Cells could grow at 0% DO and maintain viability under a nitrogen atmosphere. Cell viability was higher at low DO. Glucose, glutamine, and oxygen consumption rates changed little at DO above 1% air saturation. However, the metabolic uptake rates changed below 1% DO, where growth became oxygen limited, and a Km value of 0.6% DO was obtained for the specific oxygen uptake rate. The metabolic rates of glucose, glutamine, lactate, and ammonia increased 2-3-fold as the DO dropped from 1% to 0%. Amino acid metabolism followed the same general pattern as that of glutamine and glucose. Alanine was the only amino acid produced. The consumption rates of amino acids changed little above 1% DO, but under anaerobic conditions the consumption rates of all amino acids increased severalfold. Cells obtained most of their metabolic energy from glutamine oxidation except under oxygen limitation, when glucose provided most of the energy. The calculated ATP production rate was only slightly influenced by DO and rose at 0% DO. Antibody concentration was highest at 35% DO, while the specific antibody production rate was insensitive to DO.  相似文献   
6.
Engineering challenges in high density cell culture systems   总被引:2,自引:0,他引:2  
Ozturk SS 《Cytotechnology》1996,22(1-3):3-16
High density cell culture systems offer the advantage of production of bio-pharmaceuticals in compact bioreactors with high volumetric production rates; however, these systems are difficult to design and operate. First of all, the cells have to be retained in the bioreactor by physical means during perfusion. The design of the cell retention is the key to performance of high density cell culture systems. Oxygenation and media design are also important for maximizing the cell number. In high density perfusion reactors, variable cell density, and hence the metabolic demand, require constant adjustment of perfusion rates. The use of cell specific perfusion rate (CSPR) control provides a constant environment to the cells resulting in consistent production. On-line measurement of cell density and metabolic activities can be used for the estimation of cell densities and the control of CSPR. Issues related to mass transfer and mixing become more important at high cell densities. Due to the difference in mass transfer coefficients for oxygen and CO2, a significant accumulation of dissolved CO2 is experienced with silicone tubing aeration. Also, mixing is observed to decrease at high densities. Base addition, if not properly done, could result in localized cell lysis and poor culture performance. Non-uniform mixing in reactors promotes the heterogeneity of the culture. Cell aggregation results in segregation of the cells within different mixing zones. This paper discusses these issues and makes recommendations for further development of high density cell culture bioreactors.  相似文献   
7.
Aluminum is an abundant metal in the earth’s crust that turns out to be toxic in acidic environments. Many plants are affected by the presence of aluminum at the whole plant level, at the organ level, and at the cellular level. Tobacco as a cash crop (Nicotiana tabacum L.) is a widely cultivated plant worldwide and is also a good model organism for research. Although there are many articles on Al-phytotoxicity in the literature, reviews on a single species that are economically and scientifically important are limited. In this article, we not only provide the biology associated with tobacco Al-toxicity, but also some essential information regarding the effects of this metal on other plant species (even animals). This review provides information on aluminum localization and uptake process by different staining techniques, as well as the effects of its toxicity at different compartment levels and the physiological consequences derived from them. In addition, molecular studies in recent years have reported specific responses to Al toxicity, such as overexpression of various protective proteins. Besides, this review discusses data on various organelle-based responses, cell death, and other mechanisms, data on tobacco plants and other kingdoms relevant to these studies.  相似文献   
8.
Faced with the serious consequences resulting from the abusive and repeated use of synthetic chemicals, today rethinking crop protection is more than necessary. It is in this context that the essential oils of the Lamiaceae Ocimum gratissimum and Ocimum canum, the Poaceae Cymbopogon citratus and nardus and a Rutaceae Citrus sp. of known chemical compositions were experimented. The evaluation of the larvicidal potential of the essential oils was done by the method of topical application of the test solutions, on the L1−L2 stage larvae from the first generation of S. frugiperda obtained after rearing in an air-conditioned room. Lethal concentrations (LC10, LC50 and LC90) were determined after 48 h. After assessing the larvicidal potential of essential oils, molecular docking was carried out to study protein-ligand interactions and their propensity to bind to insect enzyme sites (AChE). The essential oil of O. gratissimum was the most effective with the lowest lethal concentrations (LC10=0.91 %, LC50=1.91 % and LC90=3.92 %). The least toxic oil to larvae was Citrus sp. (LC10=5.44 %, LC50=20.50 % and LC90=77.41 %). Molecular docking revealed that p-cymene and thymol from O. gratissimum essential oil are structurally similar and bind to the AChE active site via predominantly hydrophobic interactions and a H-bond with Tyr374 in the case of thymol. The essential oil of O. gratissimum constitutes a potential candidate for the development of biological insecticides for the fight against insect pests and for the protection of the environment.  相似文献   
9.
In this study, we investigated the combined treatment of 5-fluorouracil (5-FU) and Anatolian propolis extract (PE) on colorectal cancer (CRC)using in vitro and in vivo studies. We exposed luciferase-transfected (Lovo-Luc CRC) cells and healthy colon cells (CCD-18Co) to varying concentrations of 5-FU and PE to assess their genotoxic, apoptotic, and cytotoxic effects, as well as their intracellular reactive oxygen species (iROS) levels. We also developed a xenograft model in nude mice and evaluated the anti-tumor effects of PE and 5-FU using various methods. Our findings showed that the combination of PE and 5-FU had selectivity against cancer cells, particularly at higher doses, and enhanced the anti-tumor effectiveness of 5-FU against colon CRC. The results suggest that PE can reduce side effects and increase the effectiveness of 5-FU through iROS generation in a dose-dependent manner.  相似文献   
10.
The current study was designed to evaluate the antioxidant, anticancer and antimicrobial activities of silver nanoparticles (AgNPs) biosynthesized by Spirulina platensis extract. The biosynthesized silver nanoparticles were characterized using Fourier transform infrared (FT-IR) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The antioxidant activity of the biosynthesized AgNPs were determined via DPPH radical scavenging assay while its anticancer activity was determined using the MTT assay. The antimicrobial activity of the biosynthesized AgNPs were analyzed by disc diffusion method. Spirulina platensis acts as a reducing and capping agent. The efficacy of silver nanoparticles (AgNPs) in inhibiting the growth of Gram-negative bacteria, specifically Acetobacter, Klebsiella, Proteus vulgaris, and Pseudomonas aeruginosa, was assessed by the utilisation of the diffusion method. The study aimed to evaluate the efficacy of biosynthesized silver nanoparticles (AgNPs) against many strains of Pseudomonas aeruginosa bacteria. The findings of the study revealed that when administered in doses of 50 μl, 75 μl, and 100 μl, the largest observed zone of inhibition corresponded to measurements of 10.5 mm, 14 mm, and 16 mm, respectively. A zone of inhibition with dimensions of 8 mm, 10.5 mm, and 12 mm was detected during testing against Acetobacter at concentrations of 50 μl, 75 μl, and 100 μl, respectively. The findings also indicate that there is a positive correlation between the concentration of AgNP and the DPPH scavenging ability of silver nanoparticles. The percentage of inhibition observed at concentrations of 500 μg/ml, 400 μg/ml, 300 μg/ml, 200 μg/ml, and 100 μg/ml were recorded as 80±1.98, 61±1.98, 52±1.5, 42±1.99, and 36±1.97, respectively. In addition, it was observed that the silver nanoparticles exhibited the greatest antioxidant activity at a concentration of 500 g/ml, with a measured value of 80.89±1.99. The IC-50 values, representing the inhibitory concentration required to achieve 50 % inhibition, were found to be 8.16, 19.15, 30.14, 41.13, and 63.11 at inhibition levels of 36±1.97, 42±1.99, 52±1.5, 61±1.98, and 80±1.98, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号