首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   18篇
  78篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2016年   1篇
  2015年   3篇
  2013年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   4篇
  2004年   6篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   6篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1977年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
1.
Fine root demography in alfalfa (Medicago sativa L.)   总被引:1,自引:1,他引:0  
In perennial forages like alfalfa (Medicago sativa L.), repeated herbage removal may alter root production and mortality which, in turn, could affect deposition of fixed N in soil. Our objective was to determine the extent and patterns of fine-diameter root production and loss during the year of alfalfa stand establishment. The experiment was conducted on a loamy sand soil (Udorthentic Haploboroll) in Minnesota, USA, using horizontally installed minirhizotrons placed directly under the seeded rows at 10, 20, and 40 cm depths in four replicate blocks. We seeded four alfalfa germplasms that differed in N2 fixation capacity and root system architecture: Agate alfalfa, a winter hardy commercially-available cultivar; Ineffective Agate, which is a non-N2-fixing near isoline of Agate; a new germplasm that has few fibrous roots and strong tap-rooted traits; and a new germplasm that has many fibrous roots and a strongly branched root system architecture. Video images collected biweekly throughout the initial growing season were processed using C-MAP-ROOTS software.More than one-half of all fine roots in the upper 20 cm were produced during the first 7 weeks of growth. Root production was similar among germplasms, except that the highly fibrous, branch-rooted germplasm produced 29% more fine roots at 20 cm than other germplasms. In all germplasms, about 7% of the fine roots at each depth developed into secondarily thickened roots. By the end of the first growing season, greatest fine root mortality had occurred in the uppermost depth (48%), and least occurred at 40 cm (36%). Survival of contemporaneous root cohorts was not related to soil depth in a simple fashion, although all survivorship curves could be described using only five rates of exponential decline. There was a significant reduction in fine root mortality before the first herbage harvest, followed by a pronounced loss (average 22%) of fine roots at the 10- and 20-cm depths in the 2-week period following herbage removal. Median life spans of these early-season cohorts ranged from 58 to 131 days, based on fitted exponential equations. At all depths, fine roots produced in the 4 weeks before harvest (early- to mid-August) tended to have shorter median life spans than early-season cohorts. Similar patterns of fine root mortality did not occur at the second harvest. Germplasms differed in the pattern, but not the ultimate extent, of fine root mortality. Fine root turnover during the first year of alfalfa establishment in this experiment released an estimated 830 kg C ha–1 and 60 kg N ha–1, with no differences due to N2 fixation capacity or root system architecture.  相似文献   
2.
We purified a secreted fungal laccase from filtrates of Gaeumannomyces graminis var. tritici cultures induced with copper and xylidine. The active protein had an apparent molecular mass of 190 kDa and yielded subunits with molecular masses of 60 kDa when denatured and deglycosylated. This laccase had a pI of 5.6 and an optimal pH of 4.5 with 2,6-dimethoxyphenol as its substrate. Like other, previously purified laccases, this one contained several copper atoms in each subunit, as determined by inductively coupled plasma spectroscopy. The active enzyme catalyzed the oxidation of 2, 6-dimethoxyphenol (Km = 2.6 x 10(-5) +/- 7 x 10(-6) M), catechol (Km = 2.5 x 10(-4) +/- 1 x 10(-5) M), pyrogallol (Km = 3.1 x 10(-4) +/- 4 x 10(-5) M), and guaiacol (Km = 5.1 x 10(-4) +/- 2 x 10(-5) M). In addition, the laccase catalyzed the polymerization of 1, 8-dihydroxynaphthalene, a natural fungal melanin precursor, into a high-molecular-weight melanin and catalyzed the oxidation, or decolorization, of the dye poly B-411, a lignin-like polymer. These findings indicate that this laccase may be involved in melanin polymerization in this phytopathogen's hyphae and/or in lignin depolymerization in its infected plant host.  相似文献   
3.
Catecholamines induce net salt and water movements in duck red cells incubated in isotonic solutions. The rate of this response is approximately three times greater than a comparable effect observed in 400 mosmol hypertonic solutions in the absence of hormone (W.F. Schmidt and T. J. McManus. 1977 a.J. Gen. Physiol. 70:59-79. Otherwise, these two systems share a great many similarities. In both cases, net water and salt movements have a marked dependence on external cation concentrations, are sensitive to furosemide and insensitive to ouabain, and allow the substitution of rubidium for external potassium. In the presence of ouabain, but the absence of external potassium (or rubidium), a furosemide-sensitive net extrusion of sodium against a large electrochemical gradient can be demonstrated. When norepinephrine-treated cells are incubated with ouabain and sufficient external sodium, the furosemide-sensitive, unidirectional influxes of both sodium and rubidium are half- maximally saturated at similar rubidium concentrations; with saturating external rubidium, the same fluxes are half-maximal at comparable levels of external sodium. In the absence of sodium, a catecholamine-stimulated, furosemide-sensitive influx of rubidium persists. In the absence of rubidium, a similar but smaller component of sodium influx can be seen. We interpret these results in terms of a cotransport model for sodium plus potassium which is activated by hypertonicity or norepinephrine. When either ion is absent from the incubation medium, the system promotes an exchange-diffusion type of movement of the co-ion into the cells. In the absence of external potassium, net movement of potassium out of the cell leads to a coupled extrusion of sodium against its electrochemical gradient.  相似文献   
4.
Justus CD  Anderhag P  Goins JL  Lazzaro MD 《Planta》2004,219(1):103-109
This study investigates how microtubules and microfilaments control organelle motility within the tips of conifer pollen tubes. Organelles in the 30-m-long clear zone at the tip of Picea abies (L.) Karst. (Pinaceae) pollen tubes move in a fountain pattern. Within the center of the tube, organelles move into the tip along clearly defined paths, move randomly at the apex, and then move away from the tip beneath the plasma membrane. This pattern coincides with microtubule and microfilament organization and is the opposite of the reverse fountain seen in angiosperm pollen tubes. Application of latrunculin B, which disrupts microfilaments, completely stops growth and reduces organelle motility to Brownian motion. The clear zone at the tip remains intact but fills with thin tubules of endoplasmic reticulum. Applications of amiprophosmethyl, propyzamide or oryzalin, which all disrupt microtubules, stop growth, alter organelle motility within the tip, and alter the organization of actin microfilaments. Amiprophosmethyl inhibits organelle streaming and collapses the clear zone of vesicles at the extreme tip together with the disruption of microfilaments leading into the tip, leaving the plasma membrane intact. Propyzamide and oryzalin cause the accumulation of membrane tubules or vacuoles in the tip that reverse direction and stream in a reverse fountain. The microtubule disruption caused by propyzamide and oryzalin also reorganizes microfilaments from a fibrillar network into pronounced bundles in the tip cytoplasm. We conclude that microtubules control the positioning of organelles into and within the tip and influence the direction of streaming by mediating microfilament organization.Electronic Supplementary Material Supplementary material is available in the online version of this article at Abbreviations APM Amiprophosmethyl - FITC Fluorescein isothiocyanate - LATB Latrunculin B  相似文献   
5.
6.
7.
8.
The sensitivity of yield and quality parameters to carbon dioxide concentration [CO2] was determined for individual lines of hard‐red spring wheat released in 1903, 1921, 1965 and 1996. All cultivars were evaluated with respect to growth and vegetative characteristics, grain yield and nutritional quality in response to [CO2] increases that corresponded roughly to the CO2 concentrations at the beginning of the 20th century, the current [CO2], and the future projected [CO2] for the end of the 21st century, respectively. Leaf area ratio (cm2 g?1) declined and net assimilation rate (g m2 day?1) increased in response to increasing [CO2] for all cultivars during early vegetative growth. By maturity, vegetative growth of all cultivars significantly increased with the increase in [CO2]. Seed yield increased significantly as [CO2] increased, with yield sensitivity to rising [CO2] inversely proportional to the year of cultivar release. Greater [CO2] yield sensitivity in older cultivars was associated with whole‐plant characteristics such as increased tillering and panicle formation. Grain and flour protein, however, declined significantly with increasing [CO2] and with year of release for all cultivars, although absolute values were higher for the older cultivars. Overall, these data indicate that yield response at the whole‐plant level to recent and projected increases in [CO2] has declined with the release of newer cultivars, as has protein content of grain and flour. However, if agronomic practice can be adapted to maximize individual plant performance, [CO2] responsive characteristics of older cultivars could, potentially, be incorporated as factors in future wheat selection.  相似文献   
9.
We investigated the influence of drone size and potential reproductive quality on caste interactions by adding large drones reared in drone cells (DC drones; considered to be of higher quality) and small drones reared in worker cells (WC drones; of lower quality) to two observation colonies and monitoring worker–drone interactions and acceptance by workers. When initially introduced into the colonies more DC drones received trophallaxis, whereas more WC drones received aggression and eviction attempts from workers. Nevertheless, WC and DC drones were equally likely to be accepted by workers. For both drone types accepted individuals had slightly, but significantly greater weights than rejected males. Thus, workers discriminated between drones of different sizes and potential quality upon initial encounter, although these discriminations were not strongly associated with acceptance decisions. After drones were accepted, workers either showed no preference for interacting with WC or DC drones, or if a preference was shown it tended to favor WC drones. Compared to accepted DC drones, significantly more WC drones received grooming for longer periods of time and also spent more time engaged in all interactions with workers combined. DC and WC drones did not differ in the likelihood of receiving trophallaxis or the vibration signal, although for both interactions slightly more WC drones were recipients. Thus, workers may bias some interactions with accepted drones to favor smaller individuals with potential developmental deficiencies, in a manner that could contribute to the production of a greater total number of competitive males and increased colony reproductive output.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号