首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   21篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   6篇
  2012年   1篇
  2011年   9篇
  2010年   4篇
  2009年   1篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1992年   3篇
  1991年   10篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1976年   1篇
  1952年   1篇
排序方式: 共有102条查询结果,搜索用时 31 毫秒
1.
The CDC34 (UBC3) protein from Saccharomyces cerevisiae has a 125 residue tail that contains a polyacidic region flanked on either side by sequences of mixed composition. We show that although a catalytic domain is essential for CDC34 activity, a major cell cycle determinant of this enzyme is found within a 74 residue segment of the tail that does not include the polyacidic stretch or downstream sequences. Transposition of the CDC34 tail onto the catalytic domain of a functionally unrelated E2 such as RAD6 (UBC2) results in a chimeric E2 that combines RAD6 and CDC34 activities within the same polypeptide. In addition to the tail, the cell cycle function exhibited by the chimera and CDC34 is probably dependent on a conserved region of the catalytic domain that is shared by both RAD6 and CDC34. Despite this similarity, the CDC34 catalytic domain cannot substitute for the DNA repair and growth functions of the RAD6 catalytic domain, indicating that although these domains are structurally related, sufficient differences exist to maintain their functional individuality. Expression of the CDC34 catalytic domain and tail as separate polypeptides are capable of only partial function; thus, while the tail displays autonomous structural characteristics, there is considerable advantage gained when both domains coexist within the same polypeptide. The ability of these and other derivatives to restore partial function to a cdc34 temperature-sensitive mutant but not to a disruption mutant suggests that interaction between two CDC34 polypeptides is a requirement of CDC34 activity. Based on this idea we propose a model that accounts for the initiating steps leading to multi-ubiquitin chain synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
蚕豆植株叶片随茎节自上而下表现出明显的发育与衰老顺序,可作为衰老特征的是叶绿素和蛋白质含量明显下降。蚕豆叶中SOD活性主要定位于12 000× g离心后所得的上清液和叶绿体组分。衰老叶片的SOD总活性和叶绿体组分的相对活性都有所下降,SOD同工酶谱也发生了改变。O_2~ 产生速率随叶龄增大而稍上升;而MDA含量在叶片外观表现枯黄衰老征兆前就急剧上升。可能因为衰老叶片过氧化氢酶活性大幅度下降与SOD之间的不平衡,致使O_2~ 代谢中间产物累积而引起膜的损伤.  相似文献   
3.
D. Huang  K. T. Chun  M. G. Goebl    P. J. Roach 《Genetics》1996,143(1):119-127
Mutations in GLC7, the gene encoding the type 1 protein phosphatase catalytic subunit, cause a variety of abberrant phenotypes in yeast, such as impaired glycogen synthesis and relief of glucose repression of the expression of some genes. Loss of function of the REG1/HEX2 gene, necessary for glucose repression of several genes, was found to suppress the glycogen-deficient phenotype of the glc7-1 allele. Deletion of REG1 in a wild-type background led to overaccumulation of glycogen as well as slow growth and an enlarged cell size. However, loss of REG1 did not suppress other phenotypes associated with GLC7 mutations, such as inability to sporulate or, in cells bearing the glc7(Y-170) allele, lack of growth at 14°. The effect of REG1 deletion on glycogen accumulation is not simply due to derepression of glucose-repressed genes, although it does require the presence of SNF1, which encodes a protein kinase essential for expression of glucose-repressed genes and for glycogen accumulation. We propose that REG1 has a role in controlling glycogen accumulation.  相似文献   
4.
The transition from G1 to S phase of the cell cycle in Saccharomyces cerevisiae requires the activity of the Ubc3 (Cdc34) ubiquitin-conjugating enzyme. S. cerevisiae cells lacking a functional UBC3 (CDC34) gene are able to execute the Start function that initiates the cell cycle but fail to form a mitotic spindle or enter S phase. The Ubc3 (Cdc34) enzyme has previously been shown to catalyze the attachment of multiple ubiquitin molecules to model substrates, suggesting that the role of this enzyme in cell cycle progression depends on its targeting an endogenous protein(s) for degradation. In this report, we demonstrate that the Ubc3 (Cdc34) protein is itself a substrate for both ubiquitination and phosphorylation. Immunochemical localization of the gene product to the nucleus renders it likely that the relevant substrates similarly reside within the nucleus.  相似文献   
5.
K. Hill  C. Boone  M. Goebl  R. Puccia  A. M. Sdicu    H. Bussey 《Genetics》1992,130(2):273-283
We have cloned, sequenced and disrupted the KRE2 gene of Saccharomyces cerevisiae, identified by killer-resistant mutants with a defective cell wall receptor for the toxin. The KRE2 gene is close to PHO8 on chromosome 4, and encodes a predicted 49-kD protein, Kre2p, that probably enters the secretory pathway. Haploid cells carrying a disruption of the KRE2 locus grow more slowly than wild-type cells at 30 degrees, and fail to grow at 37 degrees. At 30 degrees, kre2 mutants showed altered N-linked glycosylation of proteins, as the average size of N-linked outer chains was reduced. We identified two other genes, YUR1 on chromosome 10, and KTR1 on chromosome 15, whose predicted products share 36% identity with Kre2p over more than 300 amino acid residues. Yur1p has an N-terminal signal sequence like Kre2p, while Ktr1p has a predicted topology consistent with a type 2 membrane protein. In all cases the conserved regions of these proteins appear to be on the lumenal side of secretory compartments, suggesting related function. KRE2, KTR1 and YUR1 define a new yeast gene family.  相似文献   
6.
By in vitro translation of mRNA’s isolated from free and membrane-bound polysomes, direct evidence was obtained for the synthesis of two lysosomal hydrolases, β-glucuronidase of the rat preputial gland and cathespin D of mouse spleen, on polysomes bound to rough endoplasmic reticulum (ER) membranes. When the mRNA’s for these two proteins were translated in the presence of microsomal membranes, the in vitro synthesized polypeptides were cotranslationally glycosylated and transferred into the microsomal lumen. Polypeptides synthesized in the absence of microsomal membranes were approximately 2,000 daltons larger than the respective unglycosylated microsomal polypeptides found after short times of labeling in cultured rat liver cells treated with tunicamycin. This strongly suggests that nascent chains of the lysosomal enzymes bear transient amino terminal signals which determine synthesis on bound polysomes and are removed during the cotranslational insertion of the polypeptides into the ER membranes. In the line of cultured rat liver cells used for this work, newly synthesized lysosomal hydrolases showed a dual destination; approximately 60 percent of the microsomal polypeptides detected after short times of labeling were subsequently processed proteolytically to lower molecular weight forms characteristic of the mature enzymes. The remainder was secreted from the cells without further proteolytic processing. As previously observed by other investigations in cultured fibroblasts (A. Gonzalez-Noriega, J.H. Grubbs, V. Talkad, and W.S. Sly, 1980, J Cell Biol. 85: 839-852; A. Hasilik and E.F. Neufeld, 1980, J. Biol. Chem., 255:4937-4945.) the lysosomotropic amine chloroquine prevented the proteolytic maturation of newly synthesized hydrolases and enhanced their section. In addition, unglycosylated hydrolases synthesized in cells treated with tunicamycin were exclusively exported from the cells without undergoing proteolytic processing. These results support the notions that modified sugar residues serve as sorting out signals which address the hydrolases to their lysosomal destination and that final proteolytic cleavage of hydrolase precursors take place within lysosome itself. Structural differences in the carbohydrate chains of intracellular and secreted precursors of cathespin D were detected from their differential sensitivity to digestion with endoglycosidases H and D. These observations suggest that the hydrolases exported into the medium follow the normal secretory route and that some of their oligosaccharides are subject to modifications known to affect many secretory glycoproteins during their passage through the Golgi apparatus.  相似文献   
7.
8.
9.
In Saccharomyces cerevisiae, Rub1p, like ubiquitin, is conjugated to proteins. Before protein conjugation, the carboxyl-terminal asparagine residue of Rub1p is removed. Rub1p conjugation is dependent on the carboxyl-terminal processing enzyme Yuh1p, whereas Rub1p lacking the asparagine residue is conjugated without Yuh1p. Thus, Yuh1p is the major processing enzyme for Rub1p.  相似文献   
10.
Phylogenetic relationships were determined for 76 partial P-element sequences from 14 species of the melanogaster species group within the Drosophila subgenus Sophophora. These results are examined in the context of the phylogeny of the species from which the sequences were isolated. Sequences from the P-element family fall into distinct subfamilies, or clades, which are often characteristic for particular species subgroups. When examined locally among closely related species, the evolution of P elements is characterized by vertical transmission, whereby the P-element phylogeny traces the species phylogeny. On a broader scale, however, the P-element phylogeny is not congruent with the species phylogeny. One feature of P-element evolution in the melanogaster group is the presence of more than one P-element subfamily, differing by as much as 36%, in the genomes of some species. Thus, P elements from several individual species are not monophyletic, and a likely explanation for the incongruence between P-element and species phylogenies is provided by the comparison of paralogous sequences. In certain instances, horizontal transfer seems to be a valid alternative explanation for lack of congruence between species and P-element phylogenies. The canonical P-element subfamily, which represents the active, autonomous transposable element, is restricted to D. melanogaster. Thus, its origin clearly lies outside of the melanogaster species group, consistent with the earlier conclusion of recent horizontal transfer.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号