首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2020年   1篇
  2019年   1篇
  2010年   1篇
  2009年   1篇
  2005年   3篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
2.
  • Microcystins are toxins produced by cyanobacteria, notorious for negatively affecting a wide range of living organisms, among which several plant species. Although microtubules are a well‐established target of microcystin toxicity, its effect on filamentous actin (F‐actin) in plant cells has not yet been studied.
  • Τhe effects of microcystin‐LR (MC‐LR) and an extract of a microcystin‐producing freshwater cyanobacterial strain (Microcystis flos‐aquae TAU‐MAC 1510) on the cytoskeleton (F‐actin and microtubules) of Oryza sativa (rice) root cells were studied with light, confocal, and transmission electron microscopy. Considering the role of F‐actin in endomembrane system distribution, the endoplasmic reticulum and the Golgi apparatus in extract‐treated cells were also examined.
  • F‐actin in both MC‐LR- and extract‐treated meristematic and differentiating root cells exhibited time‐dependent alterations, ranging from disorientation and bundling to the formation of ring‐like structures, eventually resulting in a collapse of the F‐actin network after longer treatments. Disorganization and eventual depolymerization of microtubules, as well as abnormal chromatin condensation were observed following treatment with the extract, effects which could be attributed to microcystins and other bioactive compounds. Moreover, cell cycle progression was inhibited in extract‐treated roots, specifically affecting the mitotic events. As a consequence of F‐actin network disorganization, endoplasmic reticulum elements appeared stacked and diminished, while Golgi dictyosomes appeared aggregated.
  • These results support that F‐actin is a prominent target of MC‐LR, both in pure form and as an extract ingredient. Endomembrane system alterations can also be attributed to the effects of cyanobacterial bioactive compounds (including microcystins) on the F‐actin cytoskeleton.
  相似文献   
3.
Aphanizomenon ovalisporum is reported for the first time inGreece, in two warm, monomictic lakes. Aphanizomenon ovalisporumwas dominant constituting 99 and 58% of the total cyanobacterialbiomass in lakes Lysimachia and Trichonis, respectively. Trichomeswere solitary (length 60–700 µm), were narrowedslightly at the ends, had a few terminal hyaline cells and hadcells containing gas vesicles (length 2.5–6.9, width 2.4–5.1µm). Heterocytes, spherical or ellipsoidal (length 4.4–10.5,width 2.41–5.1 µm) and akinetes (length 16.0–27.8,width 6.0–15.9 µm) were located in the middle ofthe trichome. High performance liquid chromatography (HPLC)analysis detected microcystin–LR (MC–LR) and a putativeanabaenopeptin in the L. Lysimachia sample. The sestonic MC–LRconcentration was 0.9 µg L–1. The origin of MC–LRin L. Lysimachia is discussed. The other cyanobacteria presentwere Pseudanabaena sp. and Planktothrix mougeotii (1% of thetotal cyanobacterial biomass).  相似文献   
4.
Three strains of Limnothrix (Cyanobacteria) isolated from Lake Kastoria, Greece, were characterized based on their morphological features and 16S rRNA gene sequences. The Limnothrix isolates 007a, 165a, and 165c can morphologically be assigned to Limnothrix redekei (Van Goor) Meffert. The 16S rRNA gene of the Limnothrix strains showed a 99% similarity to the 16S rRNA gene of Planktothrix sp. FP1. Limnothrix redekei strains 165a, 165c, 007a and Planktothrix sp. FP1 formed a separate cluster in the cyanobacterial 16S rRNA gene tree. It was distinct from the Pseudanabaena cluster, which included the other Limnothrix strains isolated from northern temperate lakes. This is the first report on the phylogeny of L. redekei strains originating from a Mediterranean lake (southern Europe) and provides new data about the genus Limnothrix.  相似文献   
5.
Cyanobacterial diversity associated with sponges remains underestimated, though it is of great scientific interest in order to understand the ecology and evolutionary history of the symbiotic relationships between the two groups. Of the filamentous cyanobacteria, the genus Leptolyngbya is the most frequently found in association with sponges as well as the largest and obviously polyphyletic group. In this study, five Leptolyngbya‐like sponge‐associated isolates were investigated using a combination of molecular, chemical, and morphological approach and revealed a novel marine genus herein designated Leptothoe gen. nov. In addition, three new species of Leptothoe, Le. sithoniana, Le. kymatousa, and Le. spongobia, are described based on a suite of distinct characters compared to other marine Leptolyngbyaceae species/strains. The three new species, hosted by four sponge species, showed different degrees of host specificity. Leptothoe sithoniana and Le. kymatousa hosted by the sponges Petrosia ficiformis and Chondrilla nucula, respectively, seem to be more specialized than Le. spongobia, which was hosted by the sponges Dysidea avara and Acanthella acuta. All three species contained nitrogen‐fixing genes and may contribute to the nitrogen budget of sponges. Leptothoe spongobia TAU‐MAC 1115 isolated from Acanthella acuta was shown to produce microcystin‐RR indicating that microcystin production among marine cyanobacteria could be more widespread than previously determined.  相似文献   
6.
The taxonomical relationship of Cylindrospermopsis raciborskii and Raphidiopsis mediterranea was studied by morphological and 16S rRNA gene diversity analyses of natural populations from Lake Kastoria, Greece. Samples were obtained during a bloom (23,830 trichomes mL−1) in August 2003. A high diversity of apical cell, trichome, heterocyte and akinete morphology, trichome fragmentation and reproduction was observed. Trichomes were grouped into three dominant morphotypes: the typical and the non-heterocytous morphotype of C. raciborskii and the typical morphotype of R. mediterranea. A morphometric comparison of the dominant morphotypes showed significant differences in mean values of cell and trichome sizes despite the high overlap in the range of the respective size values. Additionally, two new morphotypes representing developmental stages of the species are described while a new mode of reproduction involving a structurally distinct reproductive cell is described for the first time in planktic Nostocales. A putative life-cycle, common for C. raciborskii and R. mediterranea is proposed revealing that trichome reproduction of R. mediterranea gives rise both to R. mediterranea and C. raciborskii non-heterocytous morphotypes. The phylogenetic analysis of partial 16S rRNA gene (ca. 920 bp) of the co-existing Cylindrospermopsis and Raphidiopsis morphotypes revealed only one phylotype which showed 99.54% similarity to R. mediterranea HB2 (China) and 99.19% similarity to C. raciborskii form 1 (Australia). We propose that all morphotypes comprised stages of the life cycle of C. raciborkii whereas R. mediterranea from Lake Kastoria (its type locality) represents non-heterocytous stages of Cylindrospermopsis complex life cycle.  相似文献   
7.
We investigated the molecular diversity of cyanobacteria and bacteria during a water bloom in a lake with a long history of toxic cyanobacterial blooms (Lake Kastoria, Greece). We also tested the hypothesis whether bloom-forming cyanobacteria are preserved in the lake’s sediment 2 years after the bloom. The dominant cyanobacteria during the bloom included the potentially toxin-producing Microcystis aeruginosa and several other Chroococcales forms closely related to the genus Microcystis. This suggests that the use of cyanobacterial-specific primers seems to be very informative in describing the cyanobacteria during the water blooms. The bacterial community showed high diversity, consisting mostly of singleton and doubleton phylotypes. The majority of the phylotypes were typical lake bacteria including some potential pathogens and toxin metabolising bacteria, suggesting that the dominant toxic cyanobacteria did not have any significant effect on the bacterial community structure. In the sediment, 2 years after the water bloom, no bloom-forming cyanobacteria were retrieved, suggesting that they cannot be preserved in the sediment. Similar to the water column, sediment bacterial diversity was also high, consisting mostly of yet-uncultured bacteria that are related to environments where organic matter degradation takes place.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号