首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   0篇
  54篇
  2018年   1篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2010年   2篇
  2008年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1974年   1篇
  1973年   1篇
  1970年   2篇
  1969年   1篇
  1966年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
1.
2.
3.
The purpose of this study was to determine 1) whether prior (24-h) heat stress could render rats cross-resistant to the lethal activity of bacterial lipopolysaccharide (LPS) and 2) whether this acquired state of resistance is associated with endotoxemia during the heat stress event. Four groups (n = 7/group) of rats were examined: 1) saline treated, 2) LPS treated, 3) heat stressed and saline treated, and 4) heat stressed and LPS treated. Saline or LPS (Escherichia coli, serotype 0111:B4, 20 mg/kg body wt) was given intravenously 24 h after exposure to heat (ambient temperature 47-50 degrees C, relative humidity 30%) for heat-stressed rats and at the same time of day for nonheated rats; survival was monitored for 48 h. Thermal responses were similar (P > 0.05); values for maximum core temperature (Tc) and time above Tc of 40 degrees C were 42.7 +/- 0.1 and 42.6 +/- 0.1 degrees C (SE) and 44.0 +/- 2.1 and 47.9 +/- 3.7 (SE) min for the heat-stressed saline-treated and heat-stressed LPS-treated rats, respectively. Administration of LPS to nonheated rats resulted in 71.4% (5 of 7 rats) lethality. In contrast, all (7 of 7) rats subjected to a single nonlethal heat stress event 24 h before LPS treatment survived (P < 0.05). Endotoxin was not detected in arterial plasma immediately after heat stress in rats (n = 6) exposed to a Tc of 42.9 +/- 0.1 degrees C. These findings demonstrate that acute heat stress can protect rats from the lethal activity of LPS.  相似文献   
4.
5.
Dehydration and hyperthermia may impair gastricemptying (GE) during exercise; the effect of these alterations onintestinal water flux (WF) is unknown. Thus the purpose of this studywas to determine the effect of hypohydration (~2.7% body weight) on GE and WF of a water placebo (WP) during cycling exercise (85 min, 65%maximal oxygen uptake) in a cool environment (22°C) and to alsocompare GE and WF of three carbohydrate-electrolyte solutions (CES)while the subjects were hypohydrated. GE and WF were determined simultaneously by a nasogastric tube placed in the gastric antrum andvia a multilumen tube that spanned the duodenum and the first 25 cm ofjejunum. Hypohydration was attained 12-16 h before experiments bylow-intensity exercise in a hot (45°C), humid (relative humidity 50%) environment. Seven healthy subjects (age 26.7 ± 1.7 yr,maximal oxygen uptake 55.9 ± 8.2 ml · kg1 · min1)ingested either WP or a 6% (330 mosmol), 8% (400 mosmol), or a 9%(590 mosmol) CES the morning following hypohydration. For comparison,subjects ingested WP after a euhydration protocol. Solutions (~2.0liters total) were ingested as a large bolus (4.6 ml/kg body wt) 5 minbefore exercise and as small serial feedings (2.3 ml/kg body wt) every10 min of exercise. Average GE rates were not different amongconditions (P > 0.05). Mean(±SE) values for WF were also similar(P > 0.05) for the euhydration (15.3 ± 1.7 ml · cm1 · h1)and hypohydration (18.3 ± 2.6 ml · cm1 · h1)experiments. During exercise after hypohydration, waterabsorption was greater (P < 0.05)with ingestion of WP (18.3 ± 2.6) and the 6% CES (16.5 ± 3.7),compared with the 8% CES (6.9 ± 1.5) and the 9% CES (1.8 ± 1.7). Mean values for final core temperature (38.6 ± 0.1°C),heart rate (152 ± 1 beats/min), and change in plasma volume(5.7 ± 0.7%) were similar among experimental trials. Weconclude that 1) hypohydration to~3% body weight does not impair GE or fluid absorption duringmoderate exercise when ingesting WP, and2) hyperosmolality (>400 mosmol)reduced WF in the proximal intestine.

  相似文献   
6.
This studyexamined the effects of 3 days of estrogen supplementation (ES) onthermoregulation during exercise in premenopausal (20-39 yr) adultwomen during the follicular phase of the menstrual cycle. Subjects (11 control, 10 experimental) performed upright cycle ergometer exercise at60% of maximal O2 consumption ina neutral environment (25°C, 30% relative humidity) for 20 min. Subjects were given placebo (P) or -estradiol (2 mg/tablet, 3 tablets/day for 3 days). All experiments were conductedbetween 6:30 and 9:00 AM after ingestion of the last tablet. Heartrate, forearm blood flow (FBF), mean skin temperature, esophagealtemperature (Tes), and forearmsweat rate were measured. Blood analysis for estrogen and progesteronereflected the follicular phase of the menstrual cycle. MaximalO2 consumption (37.1 ± 6.2 in P vs. 38.4 ± 6.3 ml · kg1 · min1in ES) and body weight-to-surface area ratio (35.58 ± 2.85 in P vs.37.3 ± 2.7 in ES) were similar between groups. Synthesis of 70-kDaheat shock protein was not induced by 3 days of ES. Neither thethreshold for sweating (36.97 ± 0.15 in P vs. 36.90 ± 0.22°C in ES), the threshold for an increase in FBF (37.09 ± 0.22 in P vs. 37.17 ± 0.26°C in ES), the slope ofsweat rate-Tes relationship (0.42 ± 0.16 in P vs. 0.41 ± 0.17 in ES), nor the FBF-Tes relationship (10.04 ± 4.4 in P vs. 9.61 ± 3.46 in ES) was affected(P > 0.05) by 3 days of ES. Weconclude that 3 days of ES by young adult women in the follicular phaseof their menstrual cycle have no effect on heat transfer to the skin,heat dissipation by evaporative cooling, or leukocyte synthesis of70-kDa heat shock protein.

  相似文献   
7.
8.
The warm-season perennial switchgrass (Panicum virgatum) is a candidate bioenergy crop. To be successful, switchgrass production must be maintained on low-quality landscapes with minimal inputs while facing future climates that are expected to be more extreme and more variable. We propose that antecedent rainfall constrains how plants respond to drought, as well as subsequently recover from drought. To test this idea, we examined how six switchgrass genotypes responded to a 1-year severe drought and then recovered under normal rainfall in the following year. These plants had previously grown for 3 years under a range of dry to wet rainfall levels in a shallow-soil common garden with no fertilizer. Plants previously exposed to drought produced less biomass, and basal area after the severe drought was relieved compared to previously well-watered plants. In addition, there were legacy effects caused by plant size: plants that were larger pre-drought were more likely to survive the severe drought, and plants that were larger during the severe drought recovered more biomass, basal area, and tillers post-drought. Although genotypes differed somewhat in their responses, the size constraint was consistent across genotypes. These findings suggest that we can establish more drought-resilient switchgrass stands by, for example, planning for initial irrigation or planting during a wet year to allow plants to grow larger prior to experiencing drought. Additional studies are needed to understand whether these rainfall and size legacies persist or are transient.  相似文献   
9.
Effect of running intensity on intestinal permeability   总被引:5,自引:0,他引:5  
Pals, Kay L., Ray-Tai Chang, Alan J. Ryan, and Carl V. Gisolfi. Effect of running intensity on intestinal permeability. J. Appl. Physiol. 82(2): 571-576, 1997.Enhanced intestinal permeability has been associated withgastrointestinal disorders in long-distance runners. The primarypurpose of this study was to evaluate the effect of running intensityon small intestinal permeability by using the lactulose and rhamnosedifferential urinary excretion test. Secondary purposes includedassessing the relationship between small intestinal permeability andgastrointestinal symptoms and evaluating gastric damage by usingsucrose as a probe. Six healthy volunteers [5 men, 1 woman; age = 30 ± 2 yr; peak O2 uptake(O2 peak) = 57.7 ± 2.1 ml · kg1 · min1]rested or performed treadmill exercise at 40, 60, or 80%O2 peak for 60 min in a moderate environment (22°C, 50% relativehumidity). At 30 min into rest or exercise, the permeability testsolution (5 g sucrose, 5 g lactulose, 2 g rhamnose in 50 ml water;~800 mosM) was ingested. Urinary excretion rates (6 h) of thelactulose-to-rhamnose ratio were used to assess small intestinalpermeability, and concentrations of each probe were determined by usinghigh-performance liquid chromatography. Running at 80%O2 peakincreased (P < 0.05) smallintestinal permeability compared with rest, 40, and 60% O2 peakwith mean values expressed as percent recovery of ingested dose of0.107 ± 0.021 (SE), 0.048 ± 0.009, 0.056 ± 0.005, and 0.064 ± 0.010%, respectively. Increases in small intestinal permeability did not result in a higher prevalence of gastrointestinal symptoms, andurinary recovery of sucrose did not reflect increased gastric permeability. The significance and mechanisms involved in increased small intestinal permeability after high-intensity running merit further investigation.

  相似文献   
10.
Dehydration increases the osmolality of body fluids and decreases the rate of sweating during thermal stress. By localizing osmotic stimuli to central nervous system tissues, this study assessed the role of central stimulation on sweating in a heat-stressed nonhuman primate. Lenperone-tranquilized patas monkeys (Erythrocebus patas n = 5), exposed to 41 +/- 2 degrees C, were monitored for calf sweat rate, rectal and mean skin temperatures, oxygen consumption, and heart rate during infusions (255-413 microliters) of hypertonic artificial cerebrospinal fluid (ACSF) into the third cerebral ventricle. ACSF made hypertonic with NaCl to yield osmolalities of 800 and 1,000 mosmol/kgH2O significantly decreased sweat rate compared with control ACSF (285 mosmol/kgH2O), achieving maximal reductions during infusion of 37 and 53%, respectively. Rectal temperature significantly increased during the recovery period, reaching elevations of 0.69 and 0.72 degrees C, respectively, at 20 min postinfusion. In contrast, ACSF made hypertonic with sucrose (800 mosmol/kgH2O) failed to change sweat rate or rectal temperature during infusion in three animals. Thus, intracerebroventricular infusions of hypertonic ACSF mimicked dehydration-induced effects on thermoregulation. The reduction in heat loss during infusion appeared to depend on an elevation in cerebrospinal fluid [Na+] and not osmolality per se.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号