首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5243篇
  免费   339篇
  国内免费   2篇
  2023年   33篇
  2022年   54篇
  2021年   94篇
  2020年   60篇
  2019年   91篇
  2018年   119篇
  2017年   106篇
  2016年   137篇
  2015年   269篇
  2014年   262篇
  2013年   416篇
  2012年   445篇
  2011年   413篇
  2010年   241篇
  2009年   206篇
  2008年   342篇
  2007年   324篇
  2006年   279篇
  2005年   270篇
  2004年   239篇
  2003年   234篇
  2002年   216篇
  2001年   34篇
  2000年   27篇
  1999年   53篇
  1998年   56篇
  1997年   39篇
  1996年   38篇
  1995年   37篇
  1994年   36篇
  1993年   23篇
  1992年   25篇
  1991年   17篇
  1990年   26篇
  1989年   29篇
  1988年   17篇
  1987年   14篇
  1986年   21篇
  1985年   17篇
  1984年   28篇
  1983年   17篇
  1982年   19篇
  1981年   10篇
  1980年   17篇
  1979年   13篇
  1977年   13篇
  1976年   13篇
  1975年   17篇
  1971年   9篇
  1970年   10篇
排序方式: 共有5584条查询结果,搜索用时 24 毫秒
1.
2.
3.
4.
One of the major properties of the semi-synthetic minimal cell, as a model for early living cells, is the ability to self-reproduce itself, and the reproduction of the boundary layer or vesicle compartment is part of this process. A minimal bio-molecular mechanism based on the activity of one single enzyme, the FAS-B (Fatty Acid Synthase) Type I enzyme from Brevibacterium ammoniagenes, is encapsulated in 1-palmitoyl-2oleoyl-sn-glycero-3-phosphatidylcholine (POPC) liposomes to control lipid synthesis. Consequently molecules of palmitic acid released from the FAS catalysis, within the internal lumen, move toward the membrane compartment and become incorporated into the phospholipid bilayer. As a result the vesicle membranes change in lipid composition and liposome growth can be monitored. Here we report the first experiments showing vesicles growth by catalysis of one enzyme only that produces cell boundary from within. This is the prototype of the simplest autopoietic minimal cell.  相似文献   
5.
6.
DNA topoisomerase II regulates the three-dimensional organisation of DNA and is the principal target of many important anticancer and antimicrobial agents. These drugs usually act on the DNA cleavage/religation steps of the catalytic cycle resulting in accumulation of covalent DNA-topoisomerase II complexes. We have studied the different steps of the catalytic cycle as a function of salt concentration, which is a classical way to evaluate the biochemical properties of proteins. The results show that the catalytic activity of topoisomerase II follows a bell-shaped curve with optimum between 100 and 225 mM KCl. No straight-forward correlation exists between DNA binding and catalytic activity. The highest levels of drug-induced covalent DNA-topoisomerase II complexes are observed between 100 and 150 mM KCl. Remarkably, at salt concentrations between 150 mM and 225 mM KCl, topoisomerase II is converted into a drug-resistant form with greatly reduced levels of drug-induced DNA-topoisomerase II complexes. This is due to efficient religation rather than to absence of DNA cleavage as witnessed by relaxation of the supercoiled DNA substrate. In the absence of DNA, ATP hydrolysis is strongest at low salt concentrations. Unexpectedly, the addition of DNA stimulates ATP hydrolysis at 100 and 150 mM KCl, but has little or no effect below 100 mM KCl in spite of strong non-covalent DNA binding at these salt concentrations. Therefore, DNA-stimulated ATP hydrolysis appears to be associated with covalent rather than non-covalent binding of DNA to topoisomerase II. Taken together, the results suggest that it is the DNA cleavage/religation steps that are most closely associated with the catalytic activities of topoisomerase II providing a unifying theme for the biological and pharmacological modulation of this enzyme.  相似文献   
7.
Alzheimer's disease is a progressive and neurodegenerative disorder which involves multiple molecular mechanisms. Intense research during the last years has accumulated a large body of data and the search for sensitive and specific biomarkers has undergone a rapid evolution. However, the diagnosis remains problematic and the current tests do not accurately detect the process leading to neurodegeneration. Biomarkers discovery and validation are considered the key aspects to support clinical diagnosis and provide discriminatory power between different stages of the disorder. A considerable challenge is to integrate different types of data from new potent approach to reach a common interpretation and replicate the findings across studies and populations. Furthermore, long-term clinical follow-up and combined analysis of several biomarkers are among the most promising perspectives to diagnose and manage the disease. The present review will focus on the recent published data providing an updated overview of the main achievements in the genetic and biochemical research of the Alzheimer's disease. We also discuss the latest and most significant results that will help to define a specific disease signature whose validity might be clinically relevant for future AD diagnosis.  相似文献   
8.
9.
The voltage-sensitive Na+ channel is responsible for the action potential of membrane electrical excitability in neuronal tissue. Three methods were used to demonstrate the presence of neurotoxin-responsive Na+ channels in two hybrid cell lines resulting from the fusion of excitable human neuroblastoma cells with mouse fibroblasts. Only one of the two electrically active hybrid cell lines maintained the sensitivity of the neuroblastoma parent to tetrodotoxin (TTX). The other hybrid, although electrically active, was not responsive to TTX or scorpion venom. Comparisons of the patterns of expression of membrane excitability and of chromosome complements in these human neuroblastoma cell hybrids suggest that the phenotype of membrane excitability is composed of genetically distinct elements.  相似文献   
10.
Summary To obtain Tomato cell lines with an altered capacity to respond to heat-released cell wall components (elicitor) of a tomato pathogen (Fusarium oxysporum f. sp. lycopersici), positive and negative selection experiments, using BUdR enrichment techniques, were carried out on suspension cultures of the susceptible, low phytoalexin producer cultivar Red River. Both high and low phytoalexin producing clones were isolated. Further tests demonstrated that not all phytoalexin-producing clones were more susceptible to the elicitor toxic effect, and that they were altered also in the speed of response to fungal cell wall components. Cells selected with Fusarium elicitor showed the same behaviour when challenged by Phytophthora infestans elicitor, thus suggesting in this case lack of specificity. The results are finally discussed with a view to using the technique both as a tool to study the genetics and physiology of hostparasite interactions and as a possible new method for the selection of pathogen resistant genotypes.Paper no. 1224 IPRA-CNR; research supported by an EEC-BAP contract  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号