首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3443篇
  免费   186篇
  2022年   22篇
  2021年   31篇
  2020年   24篇
  2019年   38篇
  2018年   66篇
  2017年   52篇
  2016年   96篇
  2015年   134篇
  2014年   141篇
  2013年   244篇
  2012年   237篇
  2011年   213篇
  2010年   137篇
  2009年   132篇
  2008年   195篇
  2007年   189篇
  2006年   200篇
  2005年   178篇
  2004年   158篇
  2003年   141篇
  2002年   136篇
  2001年   40篇
  2000年   27篇
  1999年   36篇
  1998年   30篇
  1997年   38篇
  1996年   32篇
  1995年   29篇
  1994年   26篇
  1993年   30篇
  1992年   36篇
  1991年   34篇
  1990年   32篇
  1989年   25篇
  1988年   28篇
  1987年   20篇
  1986年   20篇
  1985年   19篇
  1984年   31篇
  1983年   27篇
  1982年   21篇
  1981年   20篇
  1980年   25篇
  1979年   25篇
  1978年   24篇
  1977年   16篇
  1975年   15篇
  1974年   16篇
  1973年   22篇
  1972年   15篇
排序方式: 共有3629条查询结果,搜索用时 15 毫秒
1.
2.
Loss of the survival motor neuron gene (SMN1) is responsible for spinal muscular atrophy (SMA), the most common inherited cause of infant mortality. Even though the SMA phenotype is traditionally considered as related to spinal motor neuron loss, it remains debated whether the specific targeting of motor neurons could represent the best therapeutic option for the disease. We here investigated, using stereological quantification methods, the spinal cord and cerebral motor cortex of ∆7 SMA mice during development, to verify extent and selectivity of motor neuron loss. We found progressive post-natal loss of spinal motor neurons, already at pre-symptomatic stages, and a higher vulnerability of motor neurons innervating proximal and axial muscles. Larger motor neurons decreased in the course of disease, either for selective loss or specific developmental impairment. We also found a selective reduction of layer V pyramidal neurons associated with layer V gliosis in the cerebral motor cortex. Our data indicate that in the ∆7 SMA model SMN loss is critical for the spinal cord, particularly for specific motor neuron pools. Neuronal loss, however, is not selective for lower motor neurons. These data further suggest that SMA pathogenesis is likely more complex than previously anticipated. The better knowledge of SMA models might be instrumental in shaping better therapeutic options for affected patients.  相似文献   
3.
Cytokines represent one of the most important elements in the communication among different cell types. They play an increasingly better understood role in the communication among hematopoietic cells and in particular in the reciprocal regulation of effector cell types of innate or natural resistance (phagocytic cells and Natural Killer (NK) cells) and those of adaptive immunity (T and B lymphocytes). Lymphocytes produce several cytokines with either stimulatory (e.g., colony stimulatory factor) or suppressive (e.g., tumor necrosis factors and interferons) effects on proliferation of early hematopoietic cells. Many of these cytokines, alone or acting in synergistic combinations, also have a differentiation-inducing ability on immature myeloid cells and act as powerful potentiators of the cellular functions of terminally differentiated phagocytic cells. The communication between lymphocytes and phagocytic cells is not unidirectional, as phagocytic cells produce factors that regulate lymphocyte activation. In addition to their role as antigen presenting cells expressing costimulatory accessory molecules and secreting cytokines (e.g., IL-1, IL-6, TNF), phagocytic cells have been recently shown to produce Natural Killer cell Stimulatory Factor (NKSF/IL-12). IL-12 is a heterodimeric cytokine with important modulatory functions on cytotoxicity of NK and T cells, lymphocyte proliferation, lymphokine production, and development of T helper cell subsets. These communications between phagocytic cells and lymphocytes are further regulated by negative and positive feedback mechanisms that contribute to maintain the homeostasis of the system in physiologic conditions and to govern the changes in this equilibrium needed for the response to infectious or other foreign agents.  相似文献   
4.
Porphobilinogen is the substrate of two enzymes: porphobilinogen deaminase and porphobilinogen-oxygenase. The first one transforms it into the metabolic precursors of heme and the second diverts it from this metabolic pathway by oxidizing porphobilinogen to 5-oxopyrrolinones. Rat blood is devoid of porphobilinogen-oxygenase under normal conditions while it carries porphobilinogen-deaminase activity. When the rats were submitted to hypoxia (pO2 = 0.42 atm) for 18 days, the activity of porphobilinogen-oxygenase appeared at the tenth day of hypoxia and reached the maximum at the 14–16th day. It decreased to a half after 2 days (half-life of the enzyme) and disappeared after 4 days of return to normal oxygen pressure. Porphobilinogen-deaminase activity increased after the first day of hypoxia, reached a maximum at the 14–16th day and did not decrease to normal values until the 15th day after return to normal oxygen pressure. The activities of both prophobilinogen-oxygenase and porphobilinogen-deaminase were induced by administration of erythropoietin. When rats were made anaemic with phenylhydrazine, porphobilinogen-oxygenase activity also appeared in the blood cells. Although the reticulocyte concentration was higher when compared to that obtained under hypoxia, the activities of the oxygenase obtained under both conditions were comparable. Porphobilinogen-deaminase activity was always closely related to the reticulocyte content. The appearance of porphobilinogen-oxygenase under the described erythropoietic conditions was due to a de novo induction of the enzyme, as shown by its inhibition with actinomycin D and cycloheximide. Porphobilinogen-oxygenase as well as porphobilinogen-deaminase were present in the rat bone marrow under normal conditions. Their activities increased in phenylhydrazine treated rats. The properties and kinetics of porphobilinogen-oxygenase from the rat blood and bone marrow were determined and found to differ in several aspects.  相似文献   
5.
6.
Summary We have made pairwise comparisons between the coding sequences of 21 genes from coldblooded vertebrates and 41 homologous sequences from warm-blooded vertebrates. In the case of 12 genes, GC levels were higher, especially in third codon positions, in warm-blooded vertebrates compared to cold-blooded vertebrates. Six genes showed no remarkable difference in GC level and three showed a lower level. In the first case, higher GC levels appear to be due to a directional fixation of mutations, presumably under the influence of body temperature (see Bernardi and Bernardi 1986b). These GC-richer genes of warm-blooded vertebrates were located, in all cases studied, in isochores higher in GC than those comprising the homologous genes of cold-blooded vertebrates. In the third case, increases appear to be due to a limited formation of GC-rich isochores which took place in some cold-blooded vertebrates after the divergence of warm-blooded vertebrates. The directional changes in the GC content of coding sequences and the evolutionary conservation of both increased and unchanged GC levels are in keeping with the existence of compositional constraints on the genome.  相似文献   
7.
Chelation by citrate was found to promote the autoxidation of Fe2+, measured as the disapperance of 1,10-phenanthroline-chelatable Fe2+. The autoxidation of citrate---2+ could in turn promote the peroxidation of microsomal phospholipid liposomes, as judged by malondialdehyde formation. At low citrate---Fe2+ ratios the autoxidation of Fe2+ was slow and the formation of malondialdehyde was preceded by a lag phase. The lag phase evidence of this, linear initial rates of lipid peroxidation were obtained via the combination of citrate---Fe2+ and citrate---Fe3+, optimum activity occurring at a Fe3+---Fe2+ ratio of 1:1. Evidence is also presented to suggest that the superoxide and the hydrogen peroxide that are formed during the autoxidation of citrate---Fe2+ can either stimulate or inhibit lipid peroxidation by affecting the yield of citrate---Fe3+ from citrate---Fe2+. No evidence was obtained for the participation of the hydroxyl radical in the initiation of lipid peroxidation by citrate---Fe2+.  相似文献   
8.
It is shown that in slightly acidic solution (pH approximately 5.3) reagent CIRCH2NHpT(CT)6 (RCl = -C6H4-N(CH3)CH2CH2Cl) modifies a double-stranded DNA fragment (120 b. p.) containing A(GA)6.T(CT)6 sequence at a single nucleotide residue, viz. G29 located near to this sequence in the DNA chain. The location of this modification point suggests formation of a triple-stranded reactive complex with parallel orientation of the pyrimidine oligonucleotide moiety of the reagent and pyrine sequence of the target DNA. Analysing the modification extent dependence of the reagent concentration the association constant Kx between the reagent and DNA was calculated (Kx = (0.95 +/- 0.03).10(5) M-1, 25 degrees C, pH = 5.3, [NaCl] = 0.1 M). The modification by the reagent ClRCH2NHpT(m5CT)6 has the same quantitative characteristics as in the case of ClRCH2NHpT(CT)6.  相似文献   
9.
We investigated several photosynthetic parameters of a virescent mutant of durum wheat and of its wild-type. Electron transport rate to ferricyanide was the same in the two genotypes when expressed on leaf area basis while O2 evolution of the leaf tissue in saturating light and CO2 was slightly higher in the yellow genotype. RuBPCase was also slightly higher. Quantum yield per absorbed light was similar in the two genotypes. P700 and Cyt f were less concentrated in the mutant while PS II was only marginally lower. The light response curve of CO2 assimilation indicated higher level of photosynthesis of the mutant in high light, which corresponded to a lower non-photochemical quenching compared to the wild-type. It is concluded that the reaction centres, cyt f and chlorophyll are not limiting factors of electron transport in wheat seedlings and that electron transport capacity is in excess with respect to that needed for driving photosynthesis. Since the differences in photosynthesis reflect differences in RuBPCase activity, it is suggested that this enzyme limits photosynthesis in wheat seedlings also at high light intensities.Abbreviations cyt f cytochrome f - chl chlorophyll - PS II photosystem II - Pnmax maximum photosynthesis - RuBCase Ribulose, 1-5,bisphosphate carboxylase  相似文献   
10.
Body wall organization in enchytraeids   总被引:2,自引:2,他引:0  
The muscle organization of the body wall in some species of oligochaetes belonging to the Enchytraeus genus is described. No differences have been detected in their circular muscles, whereas longitudinal muscles show significant differences, allowing an easy identification of the various worm species. In particular, differences are noticeable in the external longitudinal layer. These observations suggest that structural and ultrastructural muscle fiber organizations can be used as a taxonomic tool.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号