首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   14篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2014年   6篇
  2013年   7篇
  2012年   7篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   7篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
1.
Force development in smooth muscle, as in skeletal muscle, is believed to reflect recruitment of force-generating myosin cross-bridges. However, little is known about the events underlying cross-bridge recruitment as the muscle cell approaches peak isometric force and then enters a period of tension maintenance. In the present studies on single smooth muscle cells isolated from the toad (Bufo marinus) stomach muscularis, active muscle stiffness, calculated from the force response to small sinusoidal length changes (0.5% cell length, 250 Hz), was utilized to estimate the relative number of attached cross-bridges. By comparing stiffness during initial force development to stiffness during force redevelopment immediately after a quick release imposed at peak force, we propose that the instantaneous active stiffness of the cell reflects both a linearly elastic cross-bridge element having 1.5 times the compliance of the cross-bridge in frog skeletal muscle and a series elastic component having an exponential length-force relationship. At the onset of force development, the ratio of stiffness to force was 2.5 times greater than at peak isometric force. These data suggest that, upon activation, cross-bridges attach in at least two states (i.e., low-force-producing and high-force-producing) and redistribute to a steady state distribution at peak isometric force. The possibility that the cross-bridge cycling rate was modulated with time was also investigated by analyzing the time course of tension recovery to small, rapid step length changes (0.5% cell length in 2.5 ms) imposed during initial force development, at peak force, and after 15 s of tension maintenance. The rate of tension recovery slowed continuously throughout force development following activation and slowed further as force was maintained. Our results suggest that the kinetics of force production in smooth muscle may involve a redistribution of cross-bridge populations between two attached states and that the average cycling rate of these cross-bridges becomes slower with time during contraction.  相似文献   
2.
RecA-mediated cleavage of the bacteriophage lambda repressor results in inactivation of the protein and leads to induction of the lambda prophage. Here, we report the identification of three mutations in lambda repressor that significantly increase the rate of RecA-mediated cleavage. These mutations were isolated as intragenic second-site suppressors of a mutation (ind-) which prevents cleavage. Purified repressor proteins that contain both the ind- mutation and one of the second-site mutations undergo cleavage at near wild-type rates. Purified repressors that contain the second-site mutations in otherwise wild-type backgrounds undergo RecA-mediated cleavage at significantly faster rates than wild-type, and form dimers more poorly than the wild-type protein. In related experiments, we found that other repressor mutants that dimerize poorly are also better substrates for RecA-mediated cleavage. Conversely, we show that a covalent disulfide-bonded repressor dimer is resistant to cleavage. These results support a model in which repressor monomers are the only substrate in the cleavage reaction.  相似文献   
3.
4.
Calcium accumulation by human erythrocyte inside-out vesicles was linear for at least 30 min in the presence of ATP. In untreated inside-out vesicles, 3.76 +/- 1.44 nmol of calcium/min/unit of acetylcholinesterase were transported, compared with 10.57 +/- 2.05 (+/- S.D.; n = 11) in those treated with calmodulin. The amount of calmodulin necessary for 50% activation of Ca2+ accumulation was 60 +/- 22 ng/ml (+/- S.D.; n = 4). The Km (Ca2+) for calmodulin-stimulated accumulation was 0.8 +/- 0.05 microM (+/- S.D.; n = 5) using Ca2+ /ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA) buffers, or 25 microM with direct addition of unbuffered calcium. In the absence of calmodulin, these values were 0.4 and 60 microM, respectively, Km (ATP) values of 90 and 60 microM in the presence and absence of calmodulin, respectively, were measured at constant magnesium concentration (3 mM). In the presence of calmodulin, a broad pH profile is exhibited from pH 6.6 to 8.2. Maximal calcium accumulation occurs at pH 7.8. In the absence of calmodulin, the pH profile exhibits a linear upward increase from pH 7.0 to 8.2. The (Ca2+-Mg2+)-ATPase activity, measured under identical conditions, was 2.40 +/- 0.72 nmol of Pi/min/unit of acetylcholinesterase in the untreated vesicles and 11.29 +/- 2.87 nmol of Pi/min/unit of acetylcholinesterase (+/- S.D.; n = 4) in calmodulin-treated vesicles. A stoichiometry of 1.6 Ca2+/ATP hydrolyzed was determined in the absence of calmodulin; in the presence of calmodulin, this ratio was decreased to 0.94 Ca2+/ATP hydrolyzed.  相似文献   
5.
6.
The first X-ray structures of an intein-DNA complex, that of the two-domain homing endonuclease PI-SceI bound to its 36-base pair DNA substrate, have been determined in the presence and absence of Ca(2+). The DNA shows an asymmetric bending pattern, with a major 50 degree bend in the endonuclease domain and a minor 22 degree bend in the splicing domain region. Distortions of the DNA bound to the endonuclease domain cause the insertion of the two cleavage sites in the catalytic center. DNA binding induces changes in the protein conformation. The two overlapping non-identical active sites in the endonucleolytic center contain two Ca(+2) ions that coordinate to the catalytic Asp residues. Structure analysis indicates that the top strand may be cleaved first.  相似文献   
7.
Posey KL  Gimble FS 《Biochemistry》2002,41(7):2184-2190
Target sites for homing endonucleases occur infrequently in complex genomes. As a consequence, these enzymes can be used in mammalian systems to introduce double-strand breaks at recognition sites inserted within defined loci to study DNA repair by homologous and nonhomologous recombination. Using homing endonucleases for gene targeting in vivo would be more feasible if temporal or spatial regulation of their enzymatic activity were possible. Here, we show that the DNA cleavage activity of the yeast PI-SceI homing endonuclease can be turned on and off using a redox switch. Two cysteine pairs (Cys-64/Cys-344 and Cys-67/Cys-365) were separately inserted into flexible DNA binding loop(s) to create disulfide bonds that lock the endonuclease into a nonproductive conformation. The cleavage activities of the reduced Cys-64/Cys-344 and Cys-67/Cys-365 variants are similar or slightly lower than that of the control protein, but the activities of the proteins in the oxidized state are decreased more than 30-fold. Modulating the activity of the proteins is easily accomplished by adding or removing the reducing agent. We show that defects in DNA binding account for the decreased DNA cleavage activities of the proteins containing disulfide bonds. Interestingly, the Cys-67/Cys-365 variant toggles between two different DNA binding conformations under reducing and oxidizing conditions, which may permit the identification of structural differences between the two states. These studies demonstrate that homing endonuclease activity can be controlled using a molecular switch.  相似文献   
8.
Although increased bone marrow fat in age‐related bone loss has been associated with lower trabecular mass, the underlying mechanism responsible remains unknown. We hypothesized that marrow adipocytes exert a lipotoxic effect on osteoblast function and survival through the reversible biosynthesis of fatty acids (FA) into the bone marrow microenvironment. We have used a two‐chamber system to co‐culture normal human osteoblasts (NHOst) with differentiating pre‐adipocytes in the absence or presence of an inhibitor of FA synthase (cerulenin) and separated by an insert that allowed unidirectional trafficking of soluble factors only and prevented direct cell–cell contact. Supernatants were assayed for the presence of FA using mass spectophotometry. After 3 weeks in co‐culture, NHOst showed significantly lower levels of differentiation and function based on lower mineralization and expression of alkaline phosphatase, osterix, osteocalcin and Runx2. In addition, NHOst survival was affected by the presence of adipocytes as determined by MTS‐formazan and TUNEL assays as well as higher activation of caspases 3/7. These toxic effects were inhibited by addition of cerulenin. Furthermore, culture of NHOst with either adipocyte‐conditioned media alone in the absence of adipocytes themselves or with the addition of the most predominant FA (stearate or palmitate) produced similar toxic results. Finally, Runx2 nuclear binding was affected by addition of either adipocyte conditioned media or FA into the osteogenic media. We conclude that the presence of FA within the marrow milieu can contribute to the age‐related changes in bone mass and can be prevented by the inhibition of FA synthase.  相似文献   
9.
Comparative epigenomic analysis of murine and human adipogenesis   总被引:2,自引:0,他引:2  
Mikkelsen TS  Xu Z  Zhang X  Wang L  Gimble JM  Lander ES  Rosen ED 《Cell》2010,143(1):156-169
  相似文献   
10.
Articular cartilage is an avascular connective tissue that exhibits little intrinsic capacity for repair. Articular cartilage exists in a reduced oxygen ( approximately 5%) environment in vivo; therefore, oxygen tension may be an important factor that regulates the metabolism of chondrocyte progenitors. A number of recent studies have developed tissue engineering approaches for promoting cartilage repair using undifferentiated progenitor cells seeded on biomaterial scaffolds, but little is known about how oxygen might influence these engineered tissues. Human adipose-derived adult stem (hADAS) cells isolated from the stroma of subcutaneous fat were suspended in alginate beads and cultured in control or chondrogenic media in either low oxygen (5%) or atmospheric oxygen tension (20%) for up to 14 days. Under chondrogenic conditions, low oxygen tension significantly inhibited the proliferation of hADAS cells, but induced a two-fold increase in the rate of protein synthesis and a three-fold increase in total collagen synthesis. Low oxygen tension also increased glycosaminoglycan synthesis at certain timepoints. Immunohistochemical analysis showed significant production of cartilage-associated matrix molecules, including collagen type II and chondroitin-4-sulfate. These findings suggest oxygen tension may play an important role in regulating the proliferation and metabolism of hADAS cells as they undergo chondrogenesis, and the exogenous control of oxygen tension may provide a means of increasing the overall accumulation of matrix macromolecules in tissue-engineered cartilage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号