首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   24篇
  2021年   1篇
  2012年   1篇
  2010年   1篇
  2005年   1篇
  2001年   3篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   4篇
  1979年   6篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1972年   4篇
  1971年   1篇
  1970年   1篇
排序方式: 共有64条查询结果,搜索用时 140 毫秒
1.
Summary The hepatopancreas of the crayfish, Procambarus clarkii, contains an unusual abundance of gap junctions, suggesting that this tissue might provide an ideal source from which to isolate the arthropod-type of gap junction. A membrane fraction obtained by subcellular fractionation of this organ contained smooth septate junctions, zonulae adhaerentes, gap junctions and pentalaminar membrane structures (pseudo-gap junctions) as determined by electron microscopy. A further enrichment of plasma membranes and gap junctions was achieved by the use of linear sucrose gradients and extraction with 5 mM NaOH. The enrichment of gap junctions correlated with the enrichment of a 31 Kd protein band on polyacrylamide gels. Extraction with 20 mM NaOH or 0.5% (w/v) Sarkosyl NL97 resulted in the disruption and/or solubilization of gap junctions. Negative staining revealed a uniform population of 9.6 nm diameter subunits within the gap junctions with an apparent sixfold symmetry. Using antisera to the major gap junctional protein of rat liver (32 Kd) and to the lens membrane protein (MP 26), we failed to detect any homologous antigenic components in the arthropod material by immunoblotting-enriched gap junction fractions or by immunofluorescence on tissue sections. The enrichment of another membrane structure (pseudo-gap junctions), closely resembling a gap junction, correlated with the enrichment of two protein bands, 17 and 16Kd, on polyacrylamide gels. These structures appeared to have originated from intracellular myelin-like figures in phagolysosomal structures. They could be distinguished from gap junctions on the basis of their thickness, detergent-alkali insolubility, and lack of association with other plasma membrane structures, such as the septate junction. Pseudo-gap junctions may be related to a class of pentalaminar contacts among membranes involved in intracellular fusion in many eukaryotic cell types. We conclude that pseudo-gap junctions and gap junctions are different cellular structures, and that gap junctions from this arthropod tissue are uniquely different from mammalian gap junctions of rat liver in their detergentalkali solubility, equilibrium density on sucrose gradients, and protein content (antigenic properties).  相似文献   
2.
A study of communication specificity between cells in culture   总被引:15,自引:9,他引:6       下载免费PDF全文
We have examined the specificity of communication between cells in culture by co-culturing cells derived from mammalian, avian, and arthropod organisms. Both mammalian and avian culture cells have similar gap junctional phenotypes, while the insect (arthropod) cell lines have a significantly different gap junctional structure. Electrophysiological and ultrastructural methods were used to examine ionic coupling and junctional interactions between homologous and heterologous cell types. In homologous cell systems, gap junctions and ionic coupling are present at a high incidence. Also, heterologous vertebrate cells in co-culture can communicate readily. By contrast, practically no coupling (0-8%) is detectable between heterologous insect cell lines (Homopteran or Lepidopteran) and vertebrate cells (mammalian myocardial or 3T3 cells). No gap junctions have been observed between arthropod and vertebrate cell types, even though the heterologous cells may be separated by less than 10 nm. In additional studies, a low incidence of coupling was found between heterologous insect cell lines derived from different arthropod orders. However, extensive coupling was detected between insect cell lines that are derived from the same order (Homoptera). These observations suggest that there is little or no apparent specificity for communication between vertebrate cells in culture that express the same gap junctional phenotype, while there is a definite communication specificity that exists between arthropod cells in culture.  相似文献   
3.
The antibody 38C2 efficiently catalyzed a retro-Michael reaction to convert a novel, cell-permeable fluorogenic substrate into fluorescein within living cells. In vitro, the antibody converted the substrate to fluorescein with a k(cat) of 1.7 x 10(-5) s(-1) and a catalytic proficiency (k(cat)/k(uncat)K(m)) of 1.4 x 10(10) m(-1) (K(m) = 7 microm). For hybridoma cells expressing antibody or Chinese Hamster Ovarian (CHO) cells injected with antibody, incubation of the substrate in the extracellular medium resulted in bright intracellular fluorescence distinguishable from autofluorescence or noncatalyzed conversion of substrate. CHO cells loaded with antibody were 12 times brighter than control cells, and more than 85% of injected cells became fluorescent. The fluorescein produced by the antibody traveled into neighboring cells through gap junctions, as demonstrated by blocking dye transfer using the gap junction inhibitor oleamide. The presence of functional gap junctions in CHO cells was confirmed through oleamide inhibition of lucifer yellow transfer. These studies demonstrate the utility of the intracellular antibody reaction, which could generate tracer dyes in specific cells within complex multicellular environments simply by bathing the system in substrate.  相似文献   
4.
Gap junctional communication in the preimplantation mouse embryo.   总被引:15,自引:0,他引:15  
C W Lo  N B Gilula 《Cell》1979,18(2):399-409
In this study, we examined cell-to-cell communication via gap junctional channels between the cells of the early mouse embryo from the 2-cell stage to the preimplantation blastocyst stage. The extent of communication was examined by monitoring for the presence of ionic coupling, the transfer of injected fluorescein (molecular weight 330) and the transfer of injected horseradish peroxidase (molecular weight 40,000). In the 2-cell, 4-cell and precompaction 8-cell embryos, cytoplasmic bridges between sister blastomeres were responsible for ionic coupling and the transfer of injected fluorescein as well as the transfer of injected horseradish peroxidase.In contrast, no communication was observed between blastomeres from different sister pairs. Junction-mediated intercellular communication was unequivocably detected for the first time in the embryo at the early compaction stage (late 8-cell embryo). At that stage, ionic coupling was present and fluorescein injected into one cell spread to all eight cells of the embryo. Injected horseradish peroxidase was passed to only one other cell, however, again indicating the presence of cytoplasmic bridges between sister blastomeres. Junctional communication with respect to both ionic coupling and dye transfer was retained between all the cells throughout compaction. At the blastocyst stage, trophoblast cells of the blastocyst were linked by junctional channels to other trophoblast cells as well as to cells of the inner cell mass, as indicated by the spread of injected fluorescein. In addition, the extent of communication between the cells of the inner cell mass was examined in inner cell masses isolated by immunosurgery; both ionic coupling and the complete spread of injected fluorescein were observed.  相似文献   
5.
Presence of the dihydrouridine (D) stem in the mitochondrial cysteine tRNA is unusually variable among lepidosaurian reptiles. Phylogenetic and comparative analyses of cysteine tRNA gene sequences identify eight parallel losses of the D-stem, resulting in D-arm replacement loops. Sampling within the monophyletic Acrodonta provides no evidence for reversal. Slipped-strand mispairing of noncontiguous repeated sequences during replication or direct replication slippage can explain repeats observed within cysteine tRNAs that contain a D-arm replacement loop. These two mechanisms involving replication slippage can account for the loss of the cysteine tRNA D-stem in several lepidosaurian lineages, and may represent general mechanisms by which the secondary structures of mitochondrial tRNAs are altered.   相似文献   
6.
Mouse livers were perfused in situ through the portal vein with the disaccharides sucrose, lactose, maltose, and cellobiose in hypertonic concentrations (0.5 M). This treatment resulted in plasmolysis of the hepatocytes and splitting of the gap junctions and zonulae occludentes. The junctions split symmetrically, leaving a half-junction on each of the two separated cells. The process of junction splitting is followed using the freeze-fracture technique, since the junctional membranes are indistinguishable from the nonjunctional membranes in thin sections once the splitting occurs. The split junctions are also studied using the freeze-etch technique, allowing a view of the gap junction extracellular surface normally sequestered within the 2-nm "gap." The monosaccharides sorbitol and mannitol did not split the junctions during the times studied (2 min), but substitution of the chloride ion with propionate in the perfusion mixture did result in junction splitting. An envelope of morphologically distinct particles surrounding freeze-fractured gap junctions is also described.  相似文献   
7.
A series of arachidonic acid amides including anandamide and arachidonamide that act as potent inhibitors of the rat glial cell gap junction is described.  相似文献   
8.
Calmodulin and other calcium-modulated proteins bind in vitro to purified junctional polypeptides from rat liver gap junctions, bovine lens fiber junctions, a chymotryptic fragment from bovine lens junctions, and crayfish hepatopancreas gap junctions. The potential biological relevance of the interaction of calmodulin with junctional proteins is suggested by immunocytochemical localization of endogenous calmodulin in cortical regions of the cell where gap junctions exist. These observations provide a molecular basis for understanding the potential regulatory role of calmodulin on cell-cell communication channels in vivo. In addition, the calmodulin binding represents the first molecular homology that has been found for junctional channel proteins from mammalian and arthropod tissues.  相似文献   
9.
The expression of four different gap junction gene products (alpha 1, beta 1, beta 2, and beta 3) has been analysed during rat skin development and the hair growth cycle. Both alpha 1 (Cx43) and beta 2 (Cx26) connexins were coexpressed in the undifferentiated epidermis. A specific, developmentally regulated elimination of beta 2 expression was observed in the periderm at E16. Coinciding with the differentiation of the epidermis, differential expression of alpha 1 and beta 2 connexins was observed in the newly formed epidermal layers. alpha 1 connexin was expressed in the basal and spinous layers, while beta 2 was confined to the differentiated spinous and granular layers. Large gap junctions were present in the basal layer, while small gap junctions, associated with many desmosomes, were typical for the differentiated layers. Although the distribution pattern for alpha 1 and beta 2 expression remained the same in the neonatal and postnatal epidermis, the RNA and protein levels decreased markedly following birth. Hair follicle development was marked by expression of alpha 1 connexin in hair germs at E16. Following beta 2 detection at E20, the expression increased for both alpha 1 and beta 2 in developing follicles. A cell-type-specific expression was detected in the outer root sheath, in the matrix, in the matrix-derived cells (inner root sheath, cortex and medulla) and in the dermal papilla. In addition, alpha 1 was specifically expressed in the arrector pili muscle, while sebocytes expressed both alpha 1 and beta 3 (Cx31) connexin. beta 1 connexin (Cx32) was not detected at any stage analysed. The results indicate that multiple gap junction genes contribute to epidermal and follicular morphogenesis. Moreover, based on the utilization of gap junctions in all living cells of the surface epidermis, it appears that the epidermis may behave as a large communication compartment that may be coupled functionally to epidermal appendages (hair follicles and sebaceous glands) via gap junctional pathways.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号