首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  10篇
  2014年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
排序方式: 共有10条查询结果,搜索用时 0 毫秒
1
1.
Taxonomic diversity of fungi in the samples of the active layer of Antarctica was investigated using conventional microbiological techniques and metagenomic analysis of total DNA extracted from environmental samples. The list of Antarctic microscopic fungi was expanded, including detection of the species representing a portion of the fungal complex which is nonculturable or sterile on conventional nutrient media.  相似文献   
2.
3.
Almost all of the investigated samples of the Arctic and Antarctic permafrost sediments of different genesis with ages from 5–10 thousand to 2–3 million years were found to contain viable micromycete and bacterial cells. The maximum amounts of viable cells of fungi (up to 104CFU/g air-dried sample) and bacteria (up to 107–109CFU/g air-dried sample) were present in fine peaty sediment samples taken from different depths. The identified micromycetes belonged to more than 20 genera of the divisions Basidiomycota, Ascomycota, and Zygomycota, and some represented mitosporic fungi. Thawing the samples at 35 and 52°C allowed the number of detected fungal genera to be increased by more than 30%. Aerobic heterotrophic prokaryotes were dominated by coryneform, nocardioform, and spore-forming microorganisms of the order Actinomycetales.Analysis of the isolated fungi and actinomycetes showed that most of them originated from the microbial communities of ancient terrestrial biocenoses.  相似文献   
4.
5.
An algologically pure culture of the green alga Trebouxia, a phycobiont of cryptoendolithic lichens, was isolated from sandstone samples collected in the high-altitude polar regions of Antarctica. The absorption and second-derivative absorption spectra of acetone extract of the Antarctic phycobiont cells were studied in comparison with those of a Trebouxia phycobiont isolated recently from a Parmeliaceae lichen in the Mid-European climatic zone. The cells of the Antarctic phycobiont were characterized by a lower content of chlorophyll a and a higher ratio of chlorophyll b and carotenoids to chlorophyll a as compared to the Mid-European phycobiont. Furthermore, the carotenoids of the Antarctic phycobiont were more diverse. The low-temperature fluorescence spectra of the Antarctic phycobiont were characterized by an increased intensity of the short-wavelength fluorescence peak of chlorophyll aand a diminished intensity of fluorescence in the long-wavelength spectral region.  相似文献   
6.
The algologically pure cultures of the green–brown cyanobacterium Chroococcidiopsissp. and three cyanobacteria of the genus Gloeocapsa, the blue–green Gloeocapsa sp.1, the brown Gloeocapsa sp.2, and the red–orange Gloeocapsa sp.3, were isolated from sandstones and rock fissures in the high-polar regions of Antarctica. These cyanobacteria are the most widespread phycobionts of cryptoendolithic lichens in these regions. The comparative analysis of the absorption and the second-derivative absorption spectra of the cyanobacteria revealed considerable differences in the content of chlorophyll a and in the content and composition of carotenoids and phycobiliproteins. In addition to phycocyanin, allophycocyanin, and allophycocyanin B, which were present in all of the cyanobacteria studied, Gloeocapsa sp.2 also contained phycoerythrocyanin and Gloeocapsa sp.3 phycoerythrocyanin and C-phycoerythrin (the latter pigment is typical of nitrogen-fixing cyanobacteria). The fluorescence spectra of Gloeocapsa sp.2 and Gloeocapsa sp.3 considerably differed from the fluorescence spectra of the other cyanobacteria as well. The data obtained suggest that various zones of the lichens may be dominated either by photoheterotrophic or photoautotrophic cyanobacterial phycobionts, which differ in the content and composition of photosynthetic pigments.  相似文献   
7.
Comparative characterization of Geomyces isolates was performed. The isolates were obtained from Arctic cryopegs and the surrounding ancient marine deposits, from nonsaline permafrost soils, and from temperate environments. Microbiological (cultural and morphological) and molecular criteria were used to confirm the identification of the isolates as Geomyces pannorum. The isolates from cryopegs and surrounding marine deposits were shown to differ from those obtained from nonsaline soils and temperate environments in their ability to grow at negative temperatures (?2°C) under increased salt concentration (10%). The results are discussed in relation to the possible inheritance of the adaptive characteristics acquired in specific environments.  相似文献   
8.
A comparative study of the structure of micromycete complexes has been performed. The samples of micromycetes were taken by boring from unique habitats: cryopegs (lenses of non-freezing hypersaline water in ancient permafrost horizons) and permafrost Arctic sediments of different age enclosing these cryopegs. The possibility of characterizing the above habitats by the structure of specific complexes of microscopic fungi using qualitative and quantitative indices at extremely low numbers of these organisms was demonstrated.  相似文献   
9.
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号