首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1347篇
  免费   81篇
  2023年   10篇
  2022年   21篇
  2021年   31篇
  2020年   36篇
  2019年   33篇
  2018年   47篇
  2017年   41篇
  2016年   55篇
  2015年   82篇
  2014年   89篇
  2013年   107篇
  2012年   111篇
  2011年   96篇
  2010年   73篇
  2009年   55篇
  2008年   63篇
  2007年   68篇
  2006年   63篇
  2005年   55篇
  2004年   44篇
  2003年   41篇
  2002年   45篇
  2001年   14篇
  2000年   18篇
  1999年   9篇
  1998年   11篇
  1997年   6篇
  1996年   10篇
  1995年   8篇
  1994年   4篇
  1993年   5篇
  1992年   6篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1985年   8篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   5篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1971年   3篇
排序方式: 共有1428条查询结果,搜索用时 15 毫秒
1.
Local cerebral glucose utilization (LCGU) was measured, using the quantitative autoradiographic [14C]2-deoxy-D-glucose method, in 56 brain regions of 3-month-old, awake Fischer-344 rats, after intraperitoneal administration of sulpiride (SULP) 100 mg/kg. SULP, an "atypical" neuroleptic, is a selective antagonist of D2 dopamine receptors. LCGU was reduced in a few nondopaminergic regions at 1 h after drug administration. Thereafter, SULP progressively elevated LCGU in many other regions. At 3 h, LCGU was elevated in 23% of the regions examined, most of which are related to the CNS dopaminergic system (caudate-putamen, nucleus accumbens, olfactory tubercle, lateral habenula, median eminence, paraventricular hypothalamic nucleus). Increases of LCGU were observed also in the suprachiasmatic nucleus, lateral geniculate, and inferior olive. These effects of SULP on LCGU differ from the effects of the "typical" neuroleptic haloperidol, which produces widespread decreases in LCGU in the rat brain. Selective actions on different subpopulations of dopamine receptors may explain the different effects of the two neuroleptics on brain metabolism, which correspond to their different clinical and behavioral actions.  相似文献   
2.
3.
Summary Substitution of extracellular Na+ by Li+ causes depression of junctional membrane permeability inChironomus salivary gland cells; within 3 hr, permeability falls to so low a level that neither fluorescein nor the smaller inorganic ions any longer traverse the junctional membrane in detectable amounts (uncoupling). The effect is Li-specific: if choline+ is the Na+ substitute, coupling is unchanged. The Li-produced uncoupling is not reversed by restitution of Na+. Long-term exposure (>1 hr) of the cells to Ca, Mg-free medium leads also to uncoupling. This uncoupling is fully reversible by early restitution of Ca++ or Mg++. Coupling is maintained in the presence of either Ca++ or Mg++, so long as the total divalent concentration is about 12mm. The uncoupling in Ca, Mg-free medium ensues regardless of whether the main monovalent cation is Na, Li or choline.The uncouplings are accompanied by cell depolarization. Repolarization of the cells by inward current causes restoration of coupling; the junctional conductance rises again to its normal level. The effect was shown for Li-produced uncoupling, for uncoupling by prolonged absence of external Ca++ and Mg++, and for uncoupling produced by dinitrophenol. In all cases, the recoupling has the same features: (1) it develops rapidly upon application of the polarizing current; (2) it is cumulative; (3) it is transient, but outlasts the current; and (4) it appears not to depend on the particular ions carrying the current from the electrodes to the cell. The recoupling is due to repolarization of nonjunctional cell membrane; recoupling can be produced at zero net currernt through the junctional membrane. Recoupling takes place also as a result of chemically produced repolarization; restoration of theK gradients in uncoupled cells causes partial recoupling during the repolarization phase.An explanation of the results on coupling is proposed in terms of known mechanisms of regulation of Ca++ flux in cells. The uncouplings are explained by actions raising the Ca++ level in the cytoplasmic environment of the junctional membranes; the recoupling is explained by actions lowering this Ca++ level.  相似文献   
4.
Abstract: The relationship between elevations in intracellular free Ca2+ concentration ([Ca2+]i) by different mechanisms and tyrosine hydroxylase (TH) gene expression was examined. Depolarization by an elevated K+ concentration triggered rapid and sustained increases in [Ca2+]i from a basal level of ~50 to 110–150 nM and three- to fourfold elevations in TH mRNA levels, requiring extracellular calcium but not inositol 1,4,5-trisphosphate (IP3). On the other hand, bradykinin or thapsigargin, both of which induce release of intracellular calcium stores via IP3 or inhibition of Ca2+-ATPase, rapidly elevated [Ca2+]i to >200 nM and increased TH gene expression (three-to fivefold). Confocal imaging showed that the elevations in [Ca2+]i in each case occurred throughout the cyto- and nucleoplasm. The initial rise in [Ca2+]i due to either bradykinin or thapsigargin, which did not require extracellular calcium, was sufficient to initiate the events leading to increased TH expression. Consistent with this, the effects of bradykinin on TH expression were inhibited by 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid or 3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester which chelates or inhibits the release of intracellular calcium, respectively. Bradykinin required a rise in [Ca2+]i for <10 min, as opposed to 10–30 min for depolarization to increase TH mRNA levels. These results demonstrate that although each of these treatments increased TH gene expression by raising [Ca2+]i, there are important differences among them in terms of the magnitude of elevated [Ca2+]i, requirements for extracellular calcium or release of intracellular calcium stores, and duration of elevated [Ca2+]i, indicating the involvement of different calcium signaling pathways leading to regulation of TH gene expression.  相似文献   
5.
Transfer of N from legumes to associated non-legumes has been demonstrated under a wide range of conditions. Because legumes are able to derive their N requirements from N2 fixation, legumes can serve, through the transfer of N, as a source of N for accompanying non-legumes. Studies, therefore, are often limited to the transfer of N from the legume to the non-legume. However, legumes preferentially rely on available soil N as their source of N. To determine whether N can be transferred from a non-legume to a legume, two greenhouse experiments were conducted. In the short-term N-transfer experiment, a portion of the foliage of meadow bromegrass (Bromus riparius Rhem.) or alfalfa (Medicago sativa L.) was immersed in a highly labelled 15N-solution and following a 64 h incubation, the roots and leaves of the associated alfalfa and bromegrass were analyzed for 15N. In the long-term N transfer experiment, alfalfa and bromegrass were grown in an 15N-labelled nutrient solution and transplanted in pots with unlabelled bromegrass and alfalfa plants. Plants were harvested at 50 and 79 d after transplanting and analyzed for 15N content. Whether alfalfa or bromegrass were the donor plants in the short-term experiment, roots and leaves of all neighbouring alfalfa and bromegrass plants were enriched with 15N. Similarly, when alfalfa or bromegrass was labelled in the long-term experiment, the roots and shoots of neighbouring alfalfa and bromegrass plants became enriched with 15N. These two studies conclusively show that within a short period of time, N is transferred from both the N2-fixing legume to the associated non-legume and also from the non-legume to the N2-fixing legume. The occurrence of a bi-directional N transfer between N2-fixing and non-N2-fixing plants should be taken into consideration when the intensity of N cycling and the directional flow of N in pastures and natural ecosystems are investigated.  相似文献   
6.
Reliable prediction of free energy changes upon amino acid substitutions (ΔΔGs) is crucial to investigate their impact on protein stability and protein–protein interaction. Advances in experimental mutational scans allow high-throughput studies thanks to multiplex techniques. On the other hand, genomics initiatives provide a large amount of data on disease-related variants that can benefit from analyses with structure-based methods. Therefore, the computational field should keep the same pace and provide new tools for fast and accurate high-throughput ΔΔG calculations. In this context, the Rosetta modeling suite implements effective approaches to predict folding/unfolding ΔΔGs in a protein monomer upon amino acid substitutions and calculate the changes in binding free energy in protein complexes. However, their application can be challenging to users without extensive experience with Rosetta. Furthermore, Rosetta protocols for ΔΔG prediction are designed considering one variant at a time, making the setup of high-throughput screenings cumbersome. For these reasons, we devised RosettaDDGPrediction, a customizable Python wrapper designed to run free energy calculations on a set of amino acid substitutions using Rosetta protocols with little intervention from the user. Moreover, RosettaDDGPrediction assists with checking completed runs and aggregates raw data for multiple variants, as well as generates publication-ready graphics. We showed the potential of the tool in four case studies, including variants of uncertain significance in childhood cancer, proteins with known experimental unfolding ΔΔGs values, interactions between target proteins and disordered motifs, and phosphomimetics. RosettaDDGPrediction is available, free of charge and under GNU General Public License v3.0, at https://github.com/ELELAB/RosettaDDGPrediction .  相似文献   
7.
The seeds of Otoba parvifolia contain three novel compounds apparently derived from homogentisic acid, rel-(1′R,5′R)-2-(1′-farnesyl-5′-hydroxy-2′-oxocyclohex-3′-en-1′-yl)-acetic acid and its acetate as well as rel-(1′R,4′S,5′R)-2-(1′-farnesyl-4′,5′-dihydroxy-2′-oxocyclohexan-1′-yl)-acetic acid δ-lactone. The structure of an additional isolate, previously described as 2-(1′-farnesyl-2′-hydroxy-5′-oxocyclohex-3′-en-1′-yl)-acetic acid γ-lactone was revised to rel-(1′R,5′R)-2-(1′-farnesyl-5′-hydroxy-2′-oxocyclohex-3′-en-1′-yl)-acetic acid δ-lactone.  相似文献   
8.
Theoretical techniques have been developed and/or improved to predict the molecular structure of lanthanide complexes which were used to calculate their electronic properties, in particular, their electronic spectra and energy levels necessary to calculate the rates of energy transfer from the ligands to the metal ion. The molecular structure has been obtained by the SMLC/AM1 (Sparkle Model for the Calculation of Lanthanide Complexes – Austin Model 1) model where the lanthanide ion is simulated by a sparkle implemented into the AM1 Hamiltonian used to perform a HF-SCF (Hartree-Fock Self-Consistent Field) calculation. The previous implementation of the SMLC/AM1 model (sparkle/1) involving only two parameters has been generalized to be consistent with the AM1 Hamiltonian and the new model (sparkle/2) significantly improved the prediction of molecular structures of Eu(III) complexes. For the electronic spectra and energy level calculations of the lanthanide complexes the model replaces the metal ion by a point charge with the ligands held in their positions as determined by the SMLC/AM1 model, and uses a INDO/S-CI (intermediate neglect of differential overlap/spectroscopic-configuration interaction) model. A preliminary study of the solvent effects on the absorption spectra of the free ligand is also presented. For the ligand-lanthanide ion energy transfer Fermi's golden rule is used with the multipolar and exchange mechanisms being implemented and tested for several complexes. These theoretical techniques have been applied to several complexes yielding very good results when compared to experimental data as well as predictions for the molecular and electronic structures and the relative contributions of the mechanisms for the energy transfer rates. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
9.
Aerobic mycelium of wild-type Mucor rouxii accumulated about ten times higher amounts of the carotenoid pigment -carotene when grown continuously in the presence of light than the corresponding cultures grown in the dark. Carotenoid accumulation was dependent on light intensity, with the threshold located at about 10-2 W.m-2. Photocarotenogenesis in complex medium was more efficient with glucose as a carbon source. Carotenoid synthesis by M. rouxii mycelium was unaffected by both retinol acetate and retinal, which are stimulators of carotenogenesis in other zygomycetes. Carotenogenesis was significant in aerobic mycelium but was almost undetectable in anaerobic mycelium as well as in aerobic or anaerobic yeast cells. This suggested an involvement of oxygen in carotenoid synthesis by M. rouxii and the existence of developmental regulation of the expression or operation of the pathway.  相似文献   
10.
This paper reports a unique type of interaction of Epstein-Barr virus (EBV) with an EBV receptor-positive, genome-negative human lymphoid T cell line (Molt 4), which can be summarized as follows. Although Molt 4 cells express receptors for EBV, they appear to block the penetration of this virus. These observations are derived from combined studies with immunofluorescence and electron microscopy. It is possible that T cell lines bearing receptors for EBV may express such a control on virus penetration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号