首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   457篇
  免费   34篇
  2023年   2篇
  2021年   11篇
  2020年   8篇
  2019年   8篇
  2018年   9篇
  2017年   9篇
  2016年   6篇
  2015年   23篇
  2014年   29篇
  2013年   18篇
  2012年   31篇
  2011年   32篇
  2010年   20篇
  2009年   24篇
  2008年   27篇
  2007年   29篇
  2006年   20篇
  2005年   18篇
  2004年   22篇
  2003年   19篇
  2002年   18篇
  2001年   14篇
  2000年   7篇
  1999年   7篇
  1998年   4篇
  1997年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   9篇
  1991年   6篇
  1990年   5篇
  1989年   6篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1968年   3篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有491条查询结果,搜索用时 109 毫秒
1.
Inhibitory pathways are an essential component in the function of the neocortical microcircuitry. Despite the relatively small fraction of inhibitory neurons in the neocortex, these neurons are strongly activated due to their high connectivity rate and the intricate manner in which they interconnect with pyramidal cells (PCs). One prominent pathway is the frequency-dependent disynaptic inhibition (FDDI) formed between layer 5 PCs and mediated by Martinotti cells (MCs). Here, we show that simultaneous short bursts in four PCs are sufficient to exert FDDI in all neighboring PCs within the dimensions of a cortical column. This powerful inhibition is mediated by few interneurons, leading to strongly correlated membrane fluctuations and synchronous spiking between PCs simultaneously receiving FDDI. Somatic integration of such inhibition is independent and electrically isolated from monosynaptic excitation formed between the same PCs. FDDI is strongly shaped by I(h) in PC dendrites, which determines the effective integration time window for inhibitory and excitatory inputs. We propose a key disynaptic mechanism by which brief bursts generated by a few PCs can synchronize the activity in the pyramidal network.  相似文献   
2.
Treatment of painful hand neuromas by their transfer into bone   总被引:2,自引:0,他引:2  
Painful neuromas in the hand are not only very disabling for the patient, but difficult to treat. We present the results of 20 painful neuromas treated by burying the neuroma in the bone. Eighteen of the 20 neuromas operated on had acceptable results, according to the criteria of Herndon et al. We present our technique and compare our results with other treatments in the literature.  相似文献   
3.
Pseudomonas sp. strain B-300, which is able to utilize 2-chlorobenzoic acid, was isolated from a soil sample by enrichment culture. This strain was shown to grow on 2-chlorobenzoic acid and to completely degrade the substrate with concomitant chlorine ion release. Concentrations of 2-chlorobenzoic acid higher than 0.5% (w/v) were toxic to the cells. Our study also suggested that in the presence of glucose, 2-chlorobenzoic acid is converted to catechol or chlorocatechol; these are in turn transformed to muconic and chloromuconic acid, respectively, suggesting a repression by glucose of some of the degradation pathway enzymes. A similar scheme was already described for 3-chlorobenzoate degradation by pAC25 plasmid.  相似文献   
4.
The metabolism of methenolone acetate (17 beta-acetoxy-1-methyl-5 alpha-androst-1-en-3-one), a synthetic anabolic steroid, has been investigated in man. After oral administration of a 50 mg dose of the steroid to two male volunteers, twelve metabolites were detected in urine either in the glucuronide, sulfate or free steroid fractions. Methenolone, the parent steroid was detected in urine until 90 h after administration. Its cumulative urinary excretion accounted for 1.63% of the ingested dose. With the exception of 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one, the major biotransformation product of methonolone acetate, metabolites were excreted in urine at lower levels, through minor metabolic routes. Most of methenolone acetate metabolites were isolated from the glucuronic acid fraction, namely methenolone, 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one, 3 alpha-hydroxy-1 alpha-methyl-5 alpha-androstan-17-one, 17-epimethenolone, 3 alpha,6 beta-dihydroxy-1-methylen-5 alpha-androstan-17-one, 2 xi-hydroxy-1-methylen-5 alpha-androstan-3,17-dione, 6 beta-hydroxy-1-methyl-5 alpha-androst-1-en-3,17-dione, 16 alpha-hydroxy-1-methyl-5 alpha-androst-1-en-3,17-dione and 3 alpha,16 alpha-dihydroxy-1-methyl-5 alpha-androst-1-en-17-one. Interestingly, the metabolites detected in the sulfate fraction were isomeric steroids bearing a 16 alpha- or a 16 beta-hydroxyl group, whereas 1-methyl-5 alpha-androst-1-en-3,17-dione was the sole metabolite isolated from the free steroid fraction. Steroids identity was assigned on the basis of the mass spectral features of their TMS ether, TMS enol-TMS ether, MO-TMS, and d9-TMS ether derivatives and by comparison with reference and structurally related steroids. The data indicated that methenolone acetate was metabolized into several compounds resulting from oxidation of the 17-hydroxyl group and reduction of A-ring substituents, with or without concomitant hydroxylation at the C6 and C16 positions.  相似文献   
5.
The epimerization and dehydration reactions of the 17 beta-hydroxy group of anabolic 17 beta-hydroxy-17 alpha-methyl steroids have been investigated using the pyridinium salts of 17 beta-sulfate derivatives of methandienone 1, methyltestosterone 4, oxandrolone 7, mestanolone 10 and stanozolol 11 as model compounds. Rearrangement of the sulfate conjugates in buffered urine (pH 5.2) afforded the corresponding 17-epimers and 18-nor-17,17-dimethyl-13(14)-enes in a ratio of 0.8:1. These data indicated that both epimerization and dehydration of the 17 beta-sulfate derivatives were not dependent upon the respective chemical features of the steroids studied, but were instead inherent to the chemistry of the tertiary 17 beta-hydroxy group of these steroids. Interestingly, in vivo studies carried out with human male volunteers showed that only methandienone 1, methyltestosterone 4 and oxandrolone 7 yielded the corresponding 17-epimers 2, 5 and 8 and the 18-nor-17,17-dimethyl-13(14)-enes 3, 6 and 9 in ratios of 0.5:1, 2:1 and 2.7:1, respectively. No trace of the corresponding 17-epimers and 18-nor-17,17-dimethyl-13(14)-enes derivatives of mestanolone 10 and stanozolol 11 was detected in urine samples collected after administration of these steroids. These data suggested that the in vivo formation of the 17-epimers and 18-nor-17,17-dimethyl-13(14)-enes derivatives of 17 beta-hydroxy-17 alpha-methyl steroids is also dependent upon phase I and phase II metabolic reactions other than sulfation of the tertiary 17 beta-hydroxyl group, which are probably modulated by the respective chemical features of the steroidal substrates. The data reported in this study demonstrate that the 17-epimers and 18-nor-17,17-dimethyl-13(14)-enes are not artifacts resulting from the acidic or microbial degradation of the parent steroids in the gut as previously suggested by other authors, but arise from the rearrangement of their 17 beta-sulfate derivatives. Unchanged oxandrolone 7 was solely detected in the unconjugated steroid fraction whereas unchanged steroids 1, 4 and 11 were recovered from the glucuronide fraction. These data are indirect evidences suggesting that the glucuronide conjugates of compounds 1 and 4 are probably enol glucuronides and that of compound 11 is excreted in urine as a N-glucuronide involving its pyrazole moiety. The urinary excretion profiles of the epimeric and 18-nor-17,17-dimethyl-13(14)-ene steroids are presented and discussed on the basis of their structural features.  相似文献   
6.
The activity of transglutaminase (TG) was examined in the rat superior cervical ganglion (SCG) during development and after postganglionic nerve crush. During postnatal development the enzyme activity is increased by sevenfold in parallel to protein content of the ganglion and reaches adult levels by day 35 after birth. The endogenous activity (enzyme activity assayed in the absence of the exogenous substrate) during development is transiently elevated with a peak at day 21 postnatal. In the adult ganglion the enzyme specific activity is evenly distributed in all subcellular compartments, but most of it is contained in the cytosol. Within the first hour after axotomy TG activity is rapidly and transiently elevated. The peak value, 80% above control levels, is attained by 30 min postoperative. At this time the activity is increased in all subcellular fractions, but the endogenous activity is selectively increased in the fraction containing nuclei. The enhanced TG activity after axotomy can be prevented by topical treatments with verapamil, an inhibitor of voltage-dependent calcium fluxes across excitable membranes, or with the calcium chelator EGTA. The results show that intracellular TG activity is present in the SCG and that it increases with postnatal growth of the ganglion. After axotomy the enzyme activity is rapidly and transiently increased in the ganglion and this elevation critically depends on calcium fluxes.  相似文献   
7.
Summary Several bacterial strains that can oxidize mono- and dichlorinated biphenyls with one unsubstituted ring have already been described. The major route for this biodegradation leads ultimately to the corresponding chlorobenzoic acid, but several other minor chlorinated metabolites that might possibly be of concern for the environment have also been described previously. Since none of the bacterial strains that are able to oxidize these chlorinated biphenyls in pure culture are known to degrade chlorobenzoic acid, the oxidation of these substrates by axenic cultures always generates chlorobenzoates plus several other metabolites. In the present study, we have estimated the biodegradation of 4-chlorobiphenyl (4CB) by a two-membered bacterial culture containing one strain able to grow on 4CB and to transform it into 4-chlorobenzoate (4CBA) and one strain able to degrade 4CBA. The results were encouraging, since it was shown that the degradation of 4CB was more rapid and complete with the double bacterial culture.  相似文献   
8.
10 derivations of rat tracheal epithelial (RTE) cells, including normal cells, normal primary cultures, 7 tumorigenic cell lines and 1 nontumorigenic cell line transformed in vitro by treatment with 7,12-dimethylbenz[a]anthracene (DMBA), benzo[a]pyrene (BP) and/or 12-O-tetradecanoylphorbol-13-acetate (TPA) were examined for oncogene alterations. No abnormalities of Ha-ras or Ki-ras were seen that were suggestive of amplification, rearrangement or the presence of RFLPs. Analysis of specific-point mutations in Ha-ras using Pst I digestion (codon 12, GGA to GCA) or Ha-ras and Ki-ras using Xba I (codon 61, CAA to CTA) were negative. In one cell line derived by DMBA treatment, changes in the c-myc restriction digest pattern were seen after incubation with Bam HI and Hind III. Northern analysis revealed consistent differences between normal and transformed cells when probed with Ha-ras; c-myc expression was of low intensity, and the expression of Ki-ras could not be detected. Transfection of RTE cell DNAs into NIH/3T3 cells did not result in the appearance of morphologic transformants. The studies suggest that Ha-ras or Ki-ras codon 61 A to T transversions (CAA to CTA) are not associated with the immortal/tumorigenic phenotype in RTE cells transformed by DMBA or TPA, and are in contrast to results reported in some other biological systems.  相似文献   
9.
10.
We have examined in two inbred rat strains basal and stress-induced increases in plasma levels of epinephrine (EPI) and norepinephrine (NE) and compared these with activities of the adrenal enzymes involved in the synthesis of catecholamines. There were no differences in basal levels of NE and EPI in plasma of adult male rats of the Wistar-Kyoto (WKY) and Brown-Norway (B-N) strains. However, following 5 min. of intermittent footshock, plasma levels of both catecholamines were twice as high in WKY rats as in B-N rats. In the adrenals of unstressed rats, activities of tyrosine hydroxylase and dopamine-beta-hydroxylase were significantly higher in B-N rats. In addition, the adrenal weights and the contents of NE but not EPI were greater in B-N rats. Thus, in these two rat strains, the capacity of the adrenal gland to synthesize and store catecholamines appeared to be inversely related to plasma levels of NE and EPI after stress. The differences between the strains appeared to be due to differences in the rates of removal of catecholamines from the peripheral circulation as well as to differences in the rate of release of catecholamines from the sympatho-adrenal medullary system. Thus biosynthetic enzyme activities need not be related directly to the capacity to release and elevate plasma levels of catecholamines following stressful stimulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号