全文获取类型
收费全文 | 336篇 |
免费 | 29篇 |
专业分类
365篇 |
出版年
2024年 | 2篇 |
2023年 | 3篇 |
2022年 | 2篇 |
2021年 | 9篇 |
2020年 | 5篇 |
2019年 | 7篇 |
2018年 | 9篇 |
2017年 | 7篇 |
2016年 | 6篇 |
2015年 | 16篇 |
2014年 | 25篇 |
2013年 | 14篇 |
2012年 | 25篇 |
2011年 | 22篇 |
2010年 | 15篇 |
2009年 | 16篇 |
2008年 | 22篇 |
2007年 | 18篇 |
2006年 | 13篇 |
2005年 | 10篇 |
2004年 | 16篇 |
2003年 | 14篇 |
2002年 | 11篇 |
2001年 | 7篇 |
2000年 | 4篇 |
1999年 | 2篇 |
1998年 | 5篇 |
1994年 | 2篇 |
1992年 | 3篇 |
1989年 | 3篇 |
1987年 | 3篇 |
1986年 | 6篇 |
1985年 | 6篇 |
1984年 | 2篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1970年 | 1篇 |
1969年 | 3篇 |
1968年 | 1篇 |
1967年 | 2篇 |
1952年 | 1篇 |
1949年 | 1篇 |
1947年 | 3篇 |
1945年 | 1篇 |
1943年 | 2篇 |
1935年 | 1篇 |
排序方式: 共有365条查询结果,搜索用时 0 毫秒
1.
Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view 总被引:10,自引:0,他引:10
The mitochondrial life cycle consists of frequent fusion and fission events. Ample experimental and clinical data demonstrate that inhibition of either fusion or fission results in deterioration of mitochondrial bioenergetics. While fusion may benefit mitochondrial function by allowing the spreading of metabolites, protein and DNA throughout the network, the functional benefit of fission is not as intuitive. Remarkably, studies that track individual mitochondria through fusion and fission found that the two events are paired and that fusion triggers fission. On average each mitochondrion would go though ~5 fusion:fission cycles every hour. Measurement of Deltapsi(m) during single fusion and fission events demonstrates that fission may yield uneven daughter mitochondria where the depolarized daughter is less likely to become involved in a subsequent fusion and is more likely to be targeted by autophagy. Based on these observations we propose a mechanism by which the integration of mitochondrial fusion, fission and autophagy forms a quality maintenance mechanism. According to this hypothesis pairs of fusion and fission allow for the reorganization and sequestration of damaged mitochondrial components into daughter mitochondria that are segregated from the networking pool and then becoming eliminated by autophagy. 相似文献
2.
Marash L Liberman N Henis-Korenblit S Sivan G Reem E Elroy-Stein O Kimchi A 《Molecular cell》2008,30(4):447-459
DAP5 is an eIF4G protein previously implicated in mediating cap-independent translation in response to cellular stresses. Here we report that DAP5 is crucial for continuous cell survival in nonstressed cells. The knockdown of endogenous DAP5 induced M phase-specific caspase-dependent apoptosis. Bcl-2 and CDK1 were identified by two independent screens as DAP5 translation targets. Notably, the activity of the Bcl-2 IRES was reduced in DAP5 knockdown cells and a selective shift of Bcl-2 mRNA toward light polysomal fractions was detected. Furthermore, a functional IRES was identified in the 5'UTR of CDK1. At the cellular level, attenuated translation of CDK1 by DAP5 knockdown decreased the phosphorylation of its M phase substrates. Ectopic expression of Bcl-2 or CDK1 proteins partially reduced the extent of caspase activation caused by DAP5 knockdown. Thus, DAP5 is necessary for maintaining cell survival during mitosis by promoting cap-independent translation of at least two prosurvival proteins. 相似文献
3.
Cyclic changes of plasma spermine concentrations in women 总被引:1,自引:0,他引:1
Based on previous studies which suggest that blood polyamines fluctuate during the menstrual cycle, the present study was set to determine whether plasma concentrations of the polyamine spermine show menstrual cycle-associated changes and if so, how these changes relate to phasic variations in other female hormones. Blood samples were collected from a group of 9 healthy women of various ages at 5 defined periods during their menstrual cycle including 1 woman on oral contraceptives. Spermine concentrations were determined in plasma acid extracts by reversed-phase high performance liquid chromatography method. Plasma estradiol, LH and FSH were measured by microparticle enzyme immunoassay using an automatic analyzer. Spermine concentrations, 104.4 +/- 12.2 nmol/ml at 1-3 day of the cycle, were increased transiently with a peak (263.8 +/- 22.1 nmol/ml) at 8-10 day and declined to 85.4 +/- 29.8 nmol/ml by 21-23 day of the cycle. The peak spermine concentrations coincided with the first increase in plasma estrogen levels. The individual variations in the temporal profile of spermine concentrations were of similar magnitude as individual differences in other female hormones. We conclude that: a) Plasma spermine concentrations undergo distinct cyclic alterations during the menstrual cycle with peak concentrations coinciding with the first estradiol increase, and b) Peak plasma spermine concentrations occur during the follicular phase, just prior to ovulation, during the period of rapid endometrial growth. 相似文献
4.
5.
6.
Gilad AA McMahon MT Walczak P Winnard PT Raman V van Laarhoven HW Skoglund CM Bulte JW van Zijl PC 《Nature biotechnology》2007,25(2):217-219
Existing magnetic resonance reporter genes all rely on the presence of (super)paramagnetic substances and employ water relaxation to gain contrast. We designed a nonmetallic, biodegradable, lysine rich-protein (LRP) reporter, the prototype of a potential family of genetically engineered reporters expressing artificial proteins with frequency-selective contrast. This endogenous contrast, based on transfer of radiofrequency labeling from the reporter's amide protons to water protons, can be switched on and off. 相似文献
7.
8.
9.
The Mollicutes (Mycoplasma, Acholeplasma, and Spiroplasma) are the smallest, simplest and most primitive free-living and self-replicating known cells. These bacteria have evolved from Clostridia by regressive evolution and genome reduction to the range of 5.8 x 10(5)-2.2 x 10(6) basepairs (bp). Structurally, the Mollicutes completely lack cell walls and are enveloped by only a cholesterol containing cell membrane. The Mollicutes contain what can be defined as a bacterial cytoskeleton. The Spiroplasmas are unique in having a well-defined, dynamic, helical cell geometry and a flat, monolayered, membrane-bound cytoskeleton, which follows, intracellularly, the shortest helical line on the cellular coil. By applying cryo-electron-microscopy to whole cells, isolated cytoskeletons and cytoskeletal fibrils and subunits, as well as by selective extraction of cellular components, we determined, at a resolution of approximately 25 A, the cellular and molecular organization of the cytoskeleton. The cytoskeleton is assembled from a 59 kDa protein. The 59 kDa protein, has an equivalent sphere diameter of approximately 50 A. Given the approximately 100 A axial and lateral spacings in the cytoskeletal ribbons and the near-circular shape of the subunit, we suggest that the subunit is a tetramer of 59 kDa monomers; the tetramers assemble further into flat fibrils, seven of which form a flat, monolayered, well-ordered ribbon. The cytoskeleton may function as a linear motor by differential and coordinated length-changes of the fibrils driven by conformational changes of the tetrameric subunits, the shape of which changes from near circular to elliptical. The cytoskeleton controls both the dynamic helical shape and the consequent motility of the cell. A stable cluster of proteins co-purifies with the cytoskeleton. These apparent membrane and membrane-associated proteins may function as anchor proteins. 相似文献
10.