首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   25篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   9篇
  2014年   6篇
  2013年   18篇
  2012年   30篇
  2011年   19篇
  2010年   13篇
  2009年   10篇
  2008年   16篇
  2007年   23篇
  2006年   11篇
  2005年   24篇
  2004年   14篇
  2003年   18篇
  2002年   19篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1995年   7篇
  1994年   4篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有316条查询结果,搜索用时 15 毫秒
1.
For purifying carboxysomes of Thiobacillus neapolitanus an isolation procedure was developed which resulted in carboxysomes free from whole cells, protoplasts and cell fragments. These purified carboxysomes are composed of 8 proteins and at the most of 13 polypeptides. The two most abundant proteins which make up more than 60% of the carboxysomes, are ribulose-1,5-bisphosphate carboxylase and a glycoprotein with a molecular weight of 54,000. The shell of the carboxysomes consists of four glycoproteins, one also with a molecular weight of 54,000. The other proteins are present in minor quantities. Ribulose-1,5-bisphosphate carboxylase is the only enzyme which could be detected in the carboxysomes and 3-phosphoglycerate was the only product formed during incubation with ribulose-1,5-diphosphate and bicarbonate. The supernatant of a broken and centrifuged carboxysome suspension contained the large subunit of ribulose-1,5-bisphosphate carboxylase. The small subunit of ribulose-1,5-bisphosphate carboxylase was found in the pellet together with the shell proteins which indicates that the small subunit of ribulose-1,5-bisphosphate carboxylase is connected to the shell.Abbreviations RuBisCO ribulose-1,5-bisphosphate carboxylase - PMSF phenylmethylsulfonyl fluoride - PAA gelectrophoresis, polyacrylamide gelelectrophoresis - SDS sodium dodecyl sulphate - CIE crossed immunoelectrophoresis - IEF isoelectric focusing  相似文献   
2.
3.
4.
5.
Aerobic denitrification: a controversy revived   总被引:37,自引:0,他引:37  
During studies on the denitrifying mixotroph, Thiosphaera pantotropha, it has been found that this organism is capable of simultaneously utilizing nitrate and oxygen as terminal electron acceptors in respiration. This phenomenon, termed aerobic denitrification, has been found in cultures maintained at dissolved oxygen concentrations up to 90% of air saturation.The evidence for aerobic denitrification was obtained from a number of independant experiments. Denitrifying enzymes were present even in organisms growing aerobically without nitrate. Aerobic yields on acetate were higher (8.1 g protein/mol) without than with (6.0 g protein/mol) nitrate, while the anaerobic yield with nitrate was even lower (4 g protein/mol). The maximum specific growth rate of Tsa. pantotropha was higher (0.34 h-1) in the presence of both oxygen (>80% air saturation) and nitrate than in similar cultures not supplied with nitrate (0.27 h-1), indicating that the rate of electron transport to oxygen was limiting. This was confirmed by oxygen uptake experiments which showed that although the rate of respiration on acetate was not affected by nitrate, the total oxygen uptake was reduced in its presence. The original oxygen uptake could be restored by the addition of denitrification inhibitors.Dedicated to Professor Dr. H.-G. Schlegel on the occasion of his 60th birthday  相似文献   
6.
7.
8.
Short-chain fatty acids (SCFAs), the end products of fermentation of dietary fibers by the anaerobic intestinal microbiota, have been shown to exert multiple beneficial effects on mammalian energy metabolism. The mechanisms underlying these effects are the subject of intensive research and encompass the complex interplay between diet, gut microbiota, and host energy metabolism. This review summarizes the role of SCFAs in host energy metabolism, starting from the production by the gut microbiota to the uptake by the host and ending with the effects on host metabolism. There are interesting leads on the underlying molecular mechanisms, but there are also many apparently contradictory results. A coherent understanding of the multilevel network in which SCFAs exert their effects is hampered by the lack of quantitative data on actual fluxes of SCFAs and metabolic processes regulated by SCFAs. In this review we address questions that, when answered, will bring us a great step forward in elucidating the role of SCFAs in mammalian energy metabolism.  相似文献   
9.
Physical properties of capsids of plant and animal viruses are important factors in capsid self-assembly, survival of viruses in the extracellular environment, and their cell infectivity. Combined AFM experiments and computational modeling on subsecond timescales of the indentation nanomechanics of Cowpea Chlorotic Mottle Virus capsid show that the capsid’s physical properties are dynamic and local characteristics of the structure, which change with the depth of indentation and depend on the magnitude and geometry of mechanical input. Under large deformations, the Cowpea Chlorotic Mottle Virus capsid transitions to the collapsed state without substantial local structural alterations. The enthalpy change in this deformation state ΔHind = 11.5–12.8 MJ/mol is mostly due to large-amplitude out-of-plane excitations, which contribute to the capsid bending; the entropy change TΔSind = 5.1–5.8 MJ/mol is due to coherent in-plane rearrangements of protein chains, which mediate the capsid stiffening. Direct coupling of these modes defines the extent of (ir)reversibility of capsid indentation dynamics correlated with its (in)elastic mechanical response to the compressive force. This emerging picture illuminates how unique physico-chemical properties of protein nanoshells help define their structure and morphology, and determine their viruses’ biological function.  相似文献   
10.
A strict consensus tree based on chloroplast and nuclear sequences (rbcL, matK, trnL, FLint2) from 46 Amorphophallus species, two Pseudodracontium species and six outgroups is used to develop a hypothesis for the evolution of ornamentation and ectexine ultrastructure in the pollen of Amorphophallus. There are four main clades: an exclusively African, largely psilate clade (‘African clade’), an Asian, largely psilate clade (‘Asian psilate clade’) and an Asian, largely striate clade consisting of a mainly continental SE Asian clade (‘continental SE Asian striate clade’) and one centred in Malesia (‘Malesian striate clade’). Ultrastructure provides a valuable contribution towards understanding pollen ornamentation in Amorphophallus. Pollen with a thin psilate ectexine without dark granules might be plesiomorphic in Amorphophallus. Then the diverse striate type would be derived. Within both striate clades, reversals to the psilate type occur. Striate pollen with psilate caps, which is nested in the continental SE Asian striate clade, is a synapomorphy of Pseudodracontium. The fossulate type is also diverse, and its distribution in the tree indicates a polyphyletic origin. Areolate, echinate and verrucate ornamentation, occur in single species in the tree, but are found also in species not included in the molecular analysis. All three are heterogeneous and probably polyphyletic too. Reticulate, scabrate and striate/scabrate ornamentation are autapomorphies, of which the reticulate type and the striate/scabrate type may derive from psilate and striate ornamentation, respectively. Of the four main clades, the Asian psilate and African clade seem to be basal, while both striate clades might have evolved from the Asian psilate clade via a species like A. rhizomatosus. Dark granules evolved more than once, which might explain their diverse size, shape and distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号