首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   3篇
  2022年   1篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
1.
Guanosine is shown to dramatically alter the pigment phenotype of axolotls by suppressing melanization and enhancing the biosynthesis and deposition of purine-derived pigments. Phenotypic changes caused by guanosine are manifested by altered chromatophore differentiation patterns such that few black pigment cells (melanophores) differentiate (and those that do are punctate and necrotic in appearance), whereas the development of yellow (xanthophore) and reflecting (iridophore) pigment cells is enhanced. Mechanisms for changes in chromatophore differentiation, and thus pattern formation, are discussed, including the possibility that pigment cells may undergo transdifferentiation in vivo.  相似文献   
2.
Forests growing on highly weathered soils are often phosphorus (P) limited and competition between geochemical and biological sinks affects their soil P dynamics. In an attempt to elucidate the factors controlling the relative importance of these two sinks, we investigated the relationship of between soil microbial growth kinetics and soil chemical properties following amendments with C, N and P in six South African forest soils. Microbial growth kinetics were determined from respiration curves derived from measurements of CO2 effluxes from soil samples in laboratory incubations. We found that microbial growth rates after C + N additions were positively related to NaOH-extractable P and decreased with soil depth, whereas the lag time (the time between substrate addition and exponential growth) was negatively related to extractable P. However, the growth rate and lag time were unrelated to the soil’s sorption properties or Al and Fe contents. Our results indicate that at least some of the NaOH-extractable inorganic P may be biologically available within a relatively short time (days to weeks) and might be more labile than previously thought. Our results also show that microbial utilization of C + N only seemed to be constrained by P in the deeper part of the soil profiles.  相似文献   
3.
A wide variety of cellular processes use molecular motors, including processive motors that move along some form of track (e.g., myosin with actin, kinesin or dynein with tubulin) and polymerases that move along a template (e.g., DNA and RNA polymerases, ribosomes). In trying to understand how these molecular motors actually move, many apply their understanding of how man-made motors work: the latter use some form of energy to exert a force or torque on its load. However, quite a different mechanism has been proposed to possibly account for the movement of molecular motors. Rather than hydrolyzing ATP to push or pull their load, they might use their own thermal vibrational energy as well as that of their load and their environment to move the load, capturing those movements that occur along a desired vector or axis and resisting others; ATP hydrolysis is required to make backward movements impossible. This intriguing thermal capture or Brownian ratchet model is relatively more difficult to convey to students. In this report, we describe several teaching aids that are very easily constructed using widely available household materials to convey the concept of a molecular ratchet.  相似文献   
4.
Hybridization may lead to unique phytochemical expression in plant individuals. Hybrids may express novel combinations or extreme concentrations of secondary metabolites or, in some cases, produce metabolites novel to both parental species. Here we test whether there is evidence for extreme metabolite expression or novelty in F1 hybrids between Senecio aquaticus and Senecio jacobaea. Hybridization is thought to occur frequently within Senecio, and hybridization might facilitate secondary metabolite diversification within this genus. Parental species express different quantities of several classes of compounds known to be involved in antiherbivore defence, including pyrrolizidine alkaloids, chlorogenic acid, flavonoids and benzoquinoids. Hybrids demonstrate differential expression of some metabolites, producing lower concentrations of amino acids, and perhaps flavonoids, than either parental species. Despite evidence for quantitative hybrid novelty in this system, NMR profiling did not detect any novel compounds among the plant groups studied. Metabolomic profiling is a useful technique for identifying qualitative changes in major metabolites according to plant species and/or genotype, but is less useful for identifying small differences between plant groups, or differences in compounds expressed in low concentrations.  相似文献   
5.
Phosphorus (P) is an important nutrient in tundra ecosystems that co-limits or in some cases limits primary production. The availability of P is largely driven by soil characteristics, e.g., pH, organic carbon, and abundance of P-sorbing elements such as aluminium (Al) or iron (Fe). We tested how vegetation and soil properties relate to P availability across different tundra vegetation types. The different soil P fractions in the organic horizon were measured and plant foliar nitrogen (N) to P ratio and a plant bioassay was used as indicators of plant nutrient status. Microbial bioassays were used to study microbial respiration kinetics and in response to carbon, N, and P amendments. The distribution of P fractions differed significantly across vegetation types; labile fractions of P were less abundant in meadow sites compared to heath sites. Calcium-phosphates seemed to be an important P-fraction in meadows, but were only found in lower concentrations in the heath. There were only small differences in NaOH–extractable P between the vegetation types and this correlated with the distribution of oxalate-extractable Al. Plant N:P ratios and the plant bioassay indicated decreasing P availability from dry heath to mesic heath to mesic meadow. The microbial bioassay suggests that the heterotrophic microbial community is C-limited with N as a secondary limiting nutrient although there were indications that microbial P availability was lower in the meadow sites. Overall, we suggest that the observed variations in soil P across vegetation types are affecting both plant and microbial function although the differences seem to be relatively small.  相似文献   
6.
Organic phosphorus (P) is an important component of boreal forest humus soils, and its concentration has been found to be closely related to the concentration of iron (Fe) and aluminium (Al). We used solution and solid state 31P NMR spectroscopy on humus soils to characterize organic P along two groundwater recharge and discharge gradients in Fennoscandian boreal forest, which are also P sorption gradients due to differences in aluminium (Al) and iron (Fe) concentration in the humus. The composition of organic P changed sharply along the gradients. Phosphate diesters and their degradation products, as well as polyphosphates, were proportionally more abundant in low Al and Fe sites, whereas phosphate monoesters such as myo-, scyllo- and unknown inositol phosphates dominated in high Al and Fe soils. The concentration of inositol phosphates, but not that of diesters, was positively related to Al and Fe concentration in the humus soil. Overall, in high Al and Fe sites the composition of organic P seemed to be closely associated with stabilization processes, whereas in low Al and Fe sites it more closely reflected inputs of organic P, given the dominance of diesters which are generally assumed to constitute the bulk of organic P inputs to the soil. These gradients encompass the broad variation in soil properties detected in the wider Fennoscandian boreal forest landscape, as such our findings provide insight into the factors controlling P biogeochemistry in the region but should be of relevance to boreal forests elsewhere.  相似文献   
7.
8.
Plant growth in boreal forests is generally considered to be predominantly nitrogen (N) limited, but forested groundwater discharge areas may be exceptions. In this study, we conducted tests to determine whether highly productive forested groundwater discharge areas generally differ from adjacent groundwater recharge areas in terms of humus chemistry and the availability of phosphorus (P) and N to plants. We investigated six forested sites, divided into groundwater discharge and adjacent groundwater recharge areas, in northern Sweden. The humus layers of the forested groundwater discharge areas were clearly distinguished from the adjacent groundwater recharge areas by having higher acid-digestible calcium (Ca) and/or aluminium (Al) and iron (Fe) content and higher organic P and N content. Soil solution inorganic N (NH4 + and NO3 ) and pH were higher in the groundwater discharge areas than in the groundwater recharge areas. The organic P content showed a positive linear relationship to the Al and Fe content in the humus layer, indicating that organic P is associated with Al and Fe compounds in the humus. A plant bioassay using humus substrate from one groundwater discharge area and the adjacent groundwater recharge area found that plants grown in groundwater discharge area humus (with a high P-fixation capacity) increased their biomass upon P fertilization, whereas no growth response was found for N additions. By contrast, plants grown in humus from the groundwater recharge area did not respond to added P unless N was added too. This study suggests that groundwater discharge can affect the nutrient availability of N and P both directly, via increased P fixation due to the redistribution of Al and Fe, and indirectly, via the inflow of groundwater high in Ca and alkalinity, maintaining a high pH in the humus layer that favors in situ N turnover processes. Received 2 March 2001; Accepted 9 November 2001.  相似文献   
9.
Herbivores impact nutrient availability and cycling, and the net effect of herbivory on soil nutrients is generally assumed to be positive in nutrient-rich environments and negative in nutrient-poor ones. This is, however, far from a uniform pattern, and there is a recognized need to investigate any interactive effects of herbivory and habitat fertility (i.e., plant C/N ratios) on soil nutrient availabilities. We determined long-term effects of reindeer on soil extractable nitrogen (N) and phosphorus (P) and their net mineralization rates along a fertility gradient of plant carbon (C) to N and P ratios in arctic tundra. Our results showed that reindeer had a positive effect on soil N in the more nutrient-poor sites and a negative effect on soil P in the more nutrient-rich sites, which contrasts from the general consensus. The increase in N availability was linked to a decrease in plant and litter C/N ratios, suggesting that a shift in vegetation composition toward more graminoids favors higher N cycling. Soil P availability was not as closely linked to the vegetation and is likely regulated more by herbivore-induced changes in soil physical and chemical properties. The changes in soil extractable N and P resulted in higher soil N/P ratios, suggesting that reindeer could drive the vegetation toward P-limitation. This research highlights the importance of including both the elements N and P and conducting studies along environmental gradients in order to better understand the interactive effects of herbivory and habitat fertility on nutrient cycling and primary production.  相似文献   
10.
Northern ecosystems are experiencing some of the most dramatic impacts of global change on Earth. Rising temperatures, hydrological intensification, changes in atmospheric acid deposition and associated acidification recovery, and changes in vegetative cover are resulting in fundamental changes in terrestrial–aquatic biogeochemical linkages. The effects of global change are readily observed in alterations in the supply of dissolved organic matter (DOM)—the messenger between terrestrial and lake ecosystems—with potentially profound effects on the structure and function of lakes. Northern terrestrial ecosystems contain substantial stores of organic matter and filter or funnel DOM, affecting the timing and magnitude of DOM delivery to surface waters. This terrestrial DOM is processed in streams, rivers, and lakes, ultimately shifting its composition, stoichiometry, and bioavailability. Here, we explore the potential consequences of these global change‐driven effects for lake food webs at northern latitudes. Notably, we provide evidence that increased allochthonous DOM supply to lakes is overwhelming increased autochthonous DOM supply that potentially results from earlier ice‐out and a longer growing season. Furthermore, we assess the potential implications of this shift for the nutritional quality of autotrophs in terms of their stoichiometry, fatty acid composition, toxin production, and methylmercury concentration, and therefore, contaminant transfer through the food web. We conclude that global change in northern regions leads not only to reduced primary productivity but also to nutritionally poorer lake food webs, with discernible consequences for the trophic web to fish and humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号