首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
  2016年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.
Cells were isolated from stage X embryos of a line of Barred Plymouth Rock chickens (that have black pigment in their feathers due to the recessive allele at the I locus) and injected into the subgerminal cavity of embryos from an inbred line of Dwarf White Leghorns (that have white feathers due to the dominant allele at the I locus). Of 53 Dwarf White Leghorn embryos that were injected with Barred Plymouth Rock blastodermal cells, 6 (11.3%) were phenotypically chimeric with respect to feather colour and one (a male) survived to hatching. The distribution of black feathers in the recipients was variable and not limited to a particular region although, in all but one case, the donor cell lineage was evident in the head. The male somatic chimera was mated to several Barred Plymouth Rock hens to determine the extent to which donor cells had been incorporated into his testes. Of 719 chicks hatched from these matings, 2 were phenotypically Barred Plymouth Rocks demonstrating that cells capable of incorporation into the germline had been transferred. Fingerprints of the blood and sperm DNA from the germline chimera indicated that both of these tissues were different from those of the inbred line of Dwarf White Leghorns. Bands that were present in fingerprints of blood DNA from the chimera and not present in those of the Dwarf White Leghorns were observed in those of the Barred Plymouth Rocks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
In previous experiments in our laboratories, chickens that are chimeric in their gamete, melanocyte, and blood cell populations have been produced by injection of dispersed stage X blastodermal donor cells into the subgerminal cavity of stage X recipient embryos. In some experiments, donor cells were transfected with reporter gene constructs prior to injection as a preliminary step in the production of transgenic birds. Chimerism was assessed by test mating, observation of plumage, and DNA fingerprinting. Methods were sought that would provide a relatively rapid analysis of the spatial distribution of descendants of donor cells in chimeras to assess the efficacy of various methods of chimera construction. To date, the sex of donor and recipient embryos was not known and, therefore, numerous mixed sex chimeras must have been constructed by chance, since donor cells were usually collected from several embryos rather than from individual embryos. The presence of female-derived cells was determined by in situ hybridization using a W-chromosome-specific DNA probe, using smears of washed erythrocytes from 16 phenotypically male chimeric chickens ranging in age from 4 days to 42 months posthatching. The proportion of female cells detected in the erythrocyte samples was zero (eight samples) or very low (0.020-0.083%), although 1% of the erythrocytes from a phenotypically male chick that was killed 4 days after hatch were female-derived. The low proportions of female-derived cells were surprising, considering that most of these chimeras had been produced by the injection of cells pooled from several donor embryos and most recipients had been exposed to gamma irradiation prior to injection, thus dramatically enhancing the level of incorporation of donor cells into the resulting chimeras. By contrast, 0-100% of the erythrocytes were female-derived in blood samples taken at 10 days of incubation from the chorioallantois of seven phenotypically normal male embryos that resulted from the injection of blastodermal cells pooled from five embryos into irradiated recipient embryos. Approximately 70% of the erythrocytes in a blood sample from a phenotypically normal female chimeric embryo were female-derived, and 100% of the erythrocytes examined from an intersex embryo bearing a right testis and a left ovary were female-derived. These results indicate that female-derived cells can contribute to the formation of erythropoietic tissue during the early development of what will become a phenotypically male chimeric embryo. It would appear, therefore, that female-derived cells are blocked in development or destroyed, or certain male-female combinations of cells may be lethal prior to hatching.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
3.
4.
The developmental fate of male and female cells in the ovary and testis was evaluated by injecting blastodermal cells from Stage X (Eyal-Gliadi and Kochav, 1976: Dev Biol 49:321–337) chicken embryos into recipients at the same stage of development to form same-sex and mixed-sex chimeras. The sex of the donor was determined by in situ hybridization of blastodermal cells to a probe derived from repetitive sequences in the W chromosome. The sex of the recipient was assigned after determination of the chromosomal composition of erythrocytes from chimeras at 10, 20, 40, and 100 days of age. If the sex chromosome complement of all of the erythrocytes was the same as that of blastodermal cells from the donor, the sex of the recipient was assumed to be the same as that of the donor. Conversely, if the sex-chromosome complement of a portion of the erythrocytes of the chimera differed from that of the donor blastodermal cells, the sex of the recipient was assumed to differ from that of the donor. Injection of male blastodermal cells into female recipients produced both male and female chimeras in equal proportions whereas injection of female cells into male recipients produced only male chimeras. One phenotypically male chimera developed with a left ovotestis and a right testis although sexual differentiation was usually resolved into an unambiguous sexual phenotype during development when ZZ and ZW cells were present in a chimera. Donor cells contributed to the germline of 25–33% of same-sex chimeras whereas 67% of male chimeras produced by injecting male donor cells into female recipients incorporated donor cells into the germline. When ZW cells were incorporated into chimeric males, W-chromosome-specific DNA sequences were occasionally present in DNA extracted from semen. To examine the potential of W-bearing spermatozoa to fertilize ova, males producing ZW-derived offspring and semen in which W-chromosome-specific DNA was detected by Southern analysis were mated to sex-linked albino hens. Since sex-linked albino female progeny were not obtained from this mating, it was concluded that the W-bearing sperm cells were unable to fertilize ova. The production of Z-derived, but not W-derived, offspring from ZW spermatogonia indicates that female primordial germ cells can become spermatogonia in the testes. In the testes, ZW spermatogonia enter meiosis I and produce functional ZZ spermatocytes. The ZZ spermatocytes complete the second meiotic division, continue to differentiate during spermiogenesis, and leave the seminiferous tubules as functional spermatozoa. By contrast, the WW spermatocytes do not appear to complete spermiogenesis and, therefore, spermatozoa bearing the W chromosome are not produced. When cells from male embryos were incorporated into a female chimera, ZZ “oogonia” were included within the ovarian follicles and the chromosome complement of genetically male oogonia was processed normally during meiosis. Following ovulation, the male-derived ova were fertilized and produced normal offspring. This is the first reported evidence that genetically male avian germ cells can differentiate into functional ova and that genetically female germ cells can differentiate into functional sperm. © 1995 wiley-Liss, Inc.  相似文献   
5.
Guanosine diphosphate binding to the uncoupling protein of isolated mitochondria of brown adipose tissue in newborn rabbits was measured as an index of thermogenic activity. The binding was 0.281 +/- 0.022 nmol GDP/mg mitochondrial protein at 1 day of age, 0.214 +/- 0.017 at 3 days, 0.428 +/- 0.038 at 5 days, and 0.208 +/- 0.016 at 7 days. The increase in binding between 3 and 7 days of age suggests that the brown fat has an increased thermogenic capacity at that age. In addition, the potential for synthesis of the uncoupling protein was investigated in 1- to 5-day-old newborn rabbits by probing the total cellular ribonucleic acid for the messenger that codes for uncoupling protein. The amount of uncoupling protein messenger was highest at 1 day of age and declined at least until 5 days of age. Because the amount of uncoupling protein messenger decreased as the GDP binding increased, the results suggest that either the initially translated uncoupling protein was unmasked at about 5 days of age or there was a delay in the incorporation of uncoupling protein into the mitochondrial inner membrane, or both.  相似文献   
6.
Germline chimeric chickens can be constructed by injecting donor chicken blastodermal cells (CBCs) into recipient embryos and incubating to hatch. Transgenic chickens can be produced through chimeric intermediates if the donor cells are genetically manipulated; the chance of producing a transgenic chimera would be increased by enriching the donor population in transfected cells. To demonstrate that donor CBCs can be sorted according to the expression of a foreign gene, CBCs in suspension were subjected to transfection with plasmid DNA encoding bacterial β‐galactosidase (β‐gal). Following an overnight incubation, the CBCs were loaded with 5‐dodecanoylaminofluorescein di‐β‐D‐galactopyranoside (C12FDG), which is fluorescent after cleavage by β‐gal. The treated cells were subjected to fluorescence activated cell sorting (FACS) to give “positive” (fluorescent) and “negative” (non‐fluorescent) populations. Almost 100% of the “positive” population showed β‐gal activity. “Positive” cells were cultured on mouse SNL 76/7 fibroblast feeder cells and formed colonies, most of which still stained positively for β‐gal activity after three days. FACS‐sorted cells of Barred Plymouth Rock origin were injected into recipient White Leghorn embryos, resulting in chimeric embryos. Of the 298 embryos injected with sorted cells, 23 (8%; 18 injected with “positive cells, five with “negative”) survived to rearing. Somatic chimerism was seen in 12 of 18 (67%) “positive” and three of five (60%) “negative” birds with the proportion of black pigmentation averaging 19% overall. Twenty birds reached sexual maturity, of which 12 (60%) were somatically chimeric; seven (35%) of these produced donor‐derived chicks. Donor CBCs can, therefore, be sorted by FACS according to the expression of a selectable marker gene without impairing their ability to contribute to germline chimeras; this procedure could be incorporated into a practicable method by which to increase the chances of producing a transgenic chicken. Mol. Reprod. Dev. 52:33–42, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   
7.
8.
Exploitation of the insulating properties of the complete chicken lysozyme gene domain may facilitate the production of transgenic chicken bioreactors with the capacity to deposit valuable proteins in the egg white. Chimeric genes consisting of the chicken lysozyme gene regulatory sequences and sequences encoding foreign proteins could be inserted randomly into the chicken genome and retain appropriate expression levels. The research reported here established that chicken lysozyme gene regulatory sequences can be used to direct the production and secretion of green fluorescent protein (used as a reporter protein) in transiently transfected chicken blastodermal cells. Attempts to verify these findings in transgenic hens are currently in progress. To provide a rapid means of generating constructs encoding other foreign proteins under the control of lysozyme gene regulatory sequences that can facilitate the secretion of heterologous proteins in vivo, a generic lysozyme gene regulatory scaffold was created using a poxvirus-mediated gene targeting system.  相似文献   
9.
Prevotella (Bacteroides) ruminicola strains B(1)4 and S23 and Selenomonas ruminantium strain D used xylose as the sole source of carbohydrate for growth, whereas Fibrobacter succinogenes was unable to metabolize xylose. Prevotella ruminicola strain B(1)4 exhibited transport activity for xylose. In contrast, F. succinogenes lacked typical xylose uptake activity but did exhibit low binding potential for the sugar. Prevotella ruminicola strains B(1)4 and S23 as well as S. ruminantium D showed low xylose isomerase activities but higher xylulokinase activities, using assays that gave high activities for these enzymes in Escherichia coli. Xylose isomerase appeared to be produced constitutively in these ruminal bacteria, but xylulokinase was induced to varying degrees with xylose as the source of carbohydrate. Fibrobacter succinogenes lacked xylose isomerase and xylulokinase. All three species of ruminal bacteria possessed transketolase, xylulose-5-phosphate epimerase, and ribose-5-phosphate isomerase activities. Neither P. ruminicola B(1)4 nor F. succinogenes S85 showed significant phosphoketolase activity. The data indicate that F. succinogenes is unable to either actively uptake or metabolize xylose as a result of the absence of functional xylose permease, xylose isomerase, and xylulokinase activities, although it and both P. ruminicola and S. ruminantium possess the essential enzymes of the nonoxidative branch of the pentose phosphate cycle.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号