首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
  2023年   1篇
  2017年   1篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
排序方式: 共有9条查询结果,搜索用时 92 毫秒
1
1.
2.
The presence of pathogens in dairy products is often associated with contamination via bacteria attached to food-processing equipment, especially from areas where cleaning/sanitation is difficult. In this study, the attachment of Listeria monocytogenes on stainless steel (SS), followed by detachment and growth in foods, was evaluated under conditions simulating a dairy processing environment. Initially, SS coupons were immersed in milk, vanilla custard, and yogurt inoculated with the pathogen (107 CFU/ml or CFU/g) and incubated at two temperatures (5 and 20°C) for 7 days. By the end of incubation, cells were mechanically detached from coupons and used to inoculate freshly pasteurized milk which was subsequently stored at 5°C for 20 days. The suspended cells in all three products in which SS coupons were immersed were also used to inoculate freshly pasteurized milk (5°C for 20 days). When SS coupons were immersed in milk, shorter lag phases were obtained for detached than for planktonically grown cells, regardless of the preincubation temperature (5 or 20°C). The opposite was observed when custard incubated at 20°C was used to prepare the two types of inocula. However, in this case, a significant increase in growth rate was also evident when the inoculum was derived from detached cells. In another parallel study, while L. monocytogenes was not detectable on SS coupons after 7 days of incubation (at 5°C) in inoculated yogurt, marked detachment and growth were observed when these coupons were subsequently transferred and incubated at 5°C in fresh milk or/and custard. Overall, the results obtained extend our knowledge on the risk related to contamination of dairy products with detached L. monocytogenes cells.Listeria monocytogenes is ubiquitous in nature due to its inherent ability to survive and grow under a wide range of adverse environmental conditions, such as refrigeration temperatures, high acidity and salinity, and reduced water activity (16). This microorganism is a major concern for the food industry, since it is the causal agent of listeriosis, a severe disease with high hospitalization and case-fatality rates (approximately 91% and 30%, respectively) (25). According to the European Centre for Disease Control and Prevention, listeriosis was the fifth most common zoonotic infection in Europe in 2006 (14), while it accounts for approximately 28% of the deaths resulting from food-borne illnesses in the United States (34).In the food industry, inadequately cleaned food-processing equipment (e.g., stainless steel [SS] surfaces) constitutes a potential source for L. monocytogenes, resulting in contamination of foods which come in contact with such equipment (36). Even though adherence to strict sanitation practices should minimize the risk of survivors on surfaces, existing evidence suggests that a considerable risk may occur in sites of processing plants which are not easily cleaned or sanitized, such as those that do not allow direct access of sanitation equipment for abrasion (e.g., edges, convex surfaces, etc.) (43, 45). Attachment to surfaces is believed to be important for the survival and persistence of this pathogen in such environments, with some strains able to remain on equipment surfaces for several years (32, 37). Thus, L. monocytogenes has been shown to adhere to and form biofilms on various food contact surfaces under laboratory conditions (3, 42, 44). Furthermore, attached L. monocytogenes cells are more difficult to mechanically remove from surfaces and are more resistant to sanitizers than their free-living counterparts (15, 40).Dairy products have been implicated in outbreaks of listeriosis (10, 31). However, most of the in vitro studies of the growth and survival of L. monocytogenes in such products have used strains previously cultivated planktonically (41). Although the results obtained in these studies are of great value, such studies have not taken into consideration that cells contaminating a product in a food-processing environment are usually attached to surfaces enclosed in biofilms. Limited information is available on the kinetic behavior of L. monocytogenes in dairy products inoculated with detached cells, although preincubation conditions have been shown to influence subsequent growth and survival of L. monocytogenes in foods (7, 13, 17, 18). Given the major physiological differences between attached and planktonic cells (15, 27, 48), an effect on subsequent growth might be possible.Considering the above, the main objective of the present study was to assess the influence of L. monocytogenes preincubation conditions with respect to mode of growth (either attached to SS or grown suspended in dairy products) on the subsequent growth of this pathogen in milk (at 5°C for 20 days). To prepare the two types of inocula, two different growth media (milk and vanilla custard) and temperatures (5 and 20°C) were studied. The unforced detachment of L. monocytogenes cells from SS coupons and growth in two dairy products (milk and custard) at 5°C for 20 days was also evaluated. In the latter case, previous attachment of cells to the coupons was done under especially adverse preincubation conditions (in yogurt at 5°C for 7 days).  相似文献   
3.
Compounds present in Hafnia alvei cell-free culture supernatant cumulatively negatively influence the early stage of biofilm development by Salmonella enterica serovar Enteritidis on stainless steel while they also reduce the overall metabolic activity of S. Enteritidis planktonic cells. Although acylhomoserine lactones (AHLs) were detected among these compounds, the use of several synthetic AHLs was not able to affect the initial stage of biofilm formation by this pathogen.Biofilms are groups of bacteria encased in a self-produced extracellular matrix (5, 6). Biofilms formed on stainless steel (SS) surfaces in food-processing areas are of great importance since they may lead to food spoilage and transmission of diseases (2, 16). This sessile mode of life allows bacteria to enjoy a number of advantages, such as increased resistance to antimicrobial agents (9, 12). Notably, it is widely accepted that bacteria (both planktonic and biofilm cells) communicate by releasing and sensing signaling compounds in a process commonly known as quorum sensing (13, 18, 24).Salmonella enterica serovar Enteritidis is one of the most important bacterial pathogens worldwide (7, 17). Hafnia alvei are frequent psychrotrophic members of the Enterobacteriaceae community in meat products, playing a role in their spoilage, while they have been shown to be capable of producing signaling compounds (3). In this study, in order to determine any possible influence of compounds produced by H. alvei on the biofilm-forming ability of S. Enteritidis, the latter was left to develop biofilm on SS surfaces in the presence of conditioned medium obtained after the growth of the former. Biofilm formation was assessed directly by detaching cells and enumerating them and, also, indirectly by automated conductance measurements.  相似文献   
4.
Abstract

In this study, 20 heterotrophic bacteria from a minimally processed vegetables (MPV) plant were tested for their susceptibilities to five antibiotics (tetracycline, erythromycin, ampicillin, levofloxacin and ciprofloxacin), their (co)aggregation abilities and their survival under gastric simulated conditions. Peracetic acid (PA) and sodium hypochlorite (SH), both at 50?ppm, were evaluated for their abilities to control biofilms of these bacteria. In general, the Gram-negative bacteria were found to be more resistant to the selected antibiotics. Two isolates, Rhanella aquatilis and Stenotrophomonas maltophilia, demonstrated multidrug resistance. Only Rhodococcus erythropolis presented aggregation potential, while no bacterium survived under the gastric conditions. The biofilm experiments showed PA as less efficient than SH in killing biofilms and neither of the disinfectants was able to fully eliminate the biofilms. Significant regrowth was observed for most of the biofilms. The results indicate that alternative and/or complementary disinfection strategies are required to guarantee food safety.  相似文献   
5.
6.
This study aimed to investigate the possible influence of bacterial intra- and interspecies interactions on the ability of Listeria monocytogenes and Salmonella enterica to develop mixed-culture biofilms on an abiotic substratum, as well as on the subsequent resistance of sessile cells to chemical disinfection. Initially, three strains from each species were selected and left to attach and form biofilms on stainless steel (SS) coupons incubated at 15°C for 144 h, in periodically renewable tryptone soy broth (TSB), under either monoculture or mixed-culture (mono-/dual-species) conditions. Following biofilm formation, mixed-culture sessile communities were subjected to 6-min disinfection treatments with (i) benzalkonium chloride (50 ppm), (ii) sodium hypochlorite (10 ppm), (iii) peracetic acid (10 ppm), and (iv) a mixture of hydrogen peroxide (5 ppm) and peracetic acid (5 ppm). Results revealed that both species reached similar biofilm counts (ca. 10(5) CFU cm(-2)) and that, in general, interspecies interactions did not have any significant effect either on the biofilm-forming ability (as this was assessed by agar plating enumeration of the mechanically detached biofilm bacteria) or on the antimicrobial resistance of each individual species. Interestingly, pulsed-field gel electrophoresis (PFGE) analysis clearly showed that the three L. monocytogenes strains did not contribute at the same level either to the formation of mixed-culture sessile communities (mono-/dual species) or to their antimicrobial recalcitrance. Additionally, the simultaneous existence inside the biofilm structure of S. enterica cells seemed to influence the occurrence and resistance pattern of L. monocytogenes strains. In sum, this study highlights the impact of microbial interactions taking place inside a mixed-culture sessile community on both its population dynamics and disinfection resistance.  相似文献   
7.
Biofilm formation is a phenomenon occurring almost wherever microorganisms and surfaces exist in close proximity. This study aimed to evaluate the possible influence of bacterial interactions on the ability of Listeria monocytogenes and Pseudomonas putida to develop a dual-species biofilm community on stainless steel (SS), as well as on the subsequent resistance of their sessile cells to benzalkonium chloride (BC) used in inadequate (sub-lethal) concentration (50 ppm). The possible progressive adaptability of mixed-culture biofilms to BC was also investigated. To accomplish these, 3 strains per species were left to develop mixed-culture biofilms on SS coupons, incubated in daily renewable growth medium for a total period of 10 days, under either mono- or dual-species conditions. Each day, biofilm cells were exposed to disinfection treatment. Results revealed that the simultaneous presence of L. monocytogenes strongly increased the resistance of P. putida biofilm cells to BC, while culture conditions (mono-/dual-species) did not seem to significantly influence the resistance of L. monocytogenes biofilm cells. BC mainly killed L. monocytogenes cells when this was applied against the dual-species sessile community during the whole incubation period, despite the fact that from the 2nd day this community was mainly composed (>90%) of P. putida cells. No obvious adaptation to BC was observed in either L. monocytogenes or P. putida biofilm cells. Pulsed field gel electrophoresis (PFGE) analysis showed that the different strains behaved differently with regard to biofilm formation and antimicrobial resistance. Such knowledge on the physiological behavior of mixed-culture biofilms could provide the information necessary to control their formation.  相似文献   
8.
Aims: To assess the antimicrobial action of three natural‐derived products (essential oil, decoction and hydrosol of Satureja thymbra) against biofilms, composed of useful, spoilage and pathogenic bacteria (formed as monoculture or/and mixed‐culture), and to compare their efficiency with three standard acid and alkaline chemical disinfectants. Methods and Results: Two acids (hydrochloric and lactic, pH 3), one alkali (sodium hydroxide, pH 11), the essential oil of S. thymbra (1% v/v) and the two by‐products of the essential oil purification procedure (the decoction and the hydrosol fraction of essential oil, 100%), were tested against biofilms formed by five bacterial species, either as monospecies, or as mixed‐culture of all species. The tested bacterial species were Staphylococcus simulans and Lactobacillus fermentum (useful technological bacteria), Pseudomonas putida (spoilage bacterium), Salmonella enterica and Listeria monocytogenes (pathogenic bacteria). Biofilms were left to be formed on stainless steel coupons for 5 days at 16°C, before the application of disinfection treatments, for 60 and 180 min. The disinfection efficiency was evaluated by detaching the remaining viable biofilm cells and enumerating them by agar plating, as well as by automated conductance measurements (using Rapid Automated Bacterial Impedance Technique). Both these methods revealed that the essential oil and the hydrosol of S. thymbra exhibited a strong antimicrobial action against both monospecies and mixed‐culture biofilms. Surprisingly, the efficiency of the other three acid–base disinfectants was not adequate, although a long antimicrobial treatment was applied (180 min). Conclusions: The essential oil of S. thymbra (1%), as well as its hydrosol fraction (100%), presents sufficient bactericidal effect on bacterial biofilms formed on stainless steel. Significance and Impact of the Study: Use of natural antimicrobial agents could provide alternative or supplemented ways for the disinfection of microbial‐contaminated industrial surfaces.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号