首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1353篇
  免费   95篇
  国内免费   1篇
  1449篇
  2023年   6篇
  2022年   25篇
  2021年   32篇
  2020年   19篇
  2019年   27篇
  2018年   20篇
  2017年   32篇
  2016年   49篇
  2015年   68篇
  2014年   73篇
  2013年   101篇
  2012年   125篇
  2011年   116篇
  2010年   74篇
  2009年   61篇
  2008年   83篇
  2007年   75篇
  2006年   75篇
  2005年   60篇
  2004年   61篇
  2003年   66篇
  2002年   51篇
  2001年   10篇
  2000年   12篇
  1999年   12篇
  1998年   4篇
  1997年   10篇
  1996年   5篇
  1995年   6篇
  1994年   3篇
  1993年   8篇
  1992年   6篇
  1991年   4篇
  1990年   3篇
  1989年   6篇
  1988年   6篇
  1987年   2篇
  1986年   4篇
  1985年   6篇
  1983年   5篇
  1981年   4篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   5篇
  1975年   4篇
  1973年   2篇
  1972年   3篇
  1968年   2篇
  1964年   2篇
排序方式: 共有1449条查询结果,搜索用时 15 毫秒
1.
In the fruitfly, Drosophila melanogaster, autophagy and caspase activity function in parallel in the salivary gland during metamorphosis and in a common regulatory hierarchy during oogenesis. Both autophagy and caspase activity progressively increase in the remodeling fat body, and they are induced by a pulse of the molting hormone (20-hydroxyecdysone, 20E) during the larval-prepupal transition. Inhibition of autophagy and/or caspase activity in the remodeling fat body results in 25–40% pupal lethality, depending on the genotypes. Interestingly, a balancing crosstalk occurs between autophagy and caspase activity in this tissue: the inhibition of autophagy induces caspase activity and the inhibition of caspases induces autophagy. The Drosophila remodeling fat body provides an in vivo model for understanding the molecular mechanism of the balancing crosstalk between autophagy and caspase activity, which oppose with each other and are induced by the common stimulus 20E, and blockage of either path reinforces the other path.  相似文献   
2.
The filamentous bacterium S. coelicolor differentiates by forming aerial hyphae, which protrude into the air and metamorphose into chains of spores. Aerial hyphae formation is associated with the production of a small, abundant protein, SapB, which is present in a zone around colonies of differentiating bacteria. Production of SapB is impaired in bld mutants, which are blocked in aerial hyphae formation, but not in whi mutants in which spore formation is prevented. We report that aerial hyphae formation by a newly identified bld mutant is restored by juxtaposition of the mutant near colonies of SapB-producing bacteria or by the application of the purified protein near mutant colonies. These observations implicate SapB in aerial mycelium formation and suggest that SapB is a morphogenetic protein that enables hyphae on the surface of colonies to grow into the air.  相似文献   
3.
H2–forming N 5,N 10 methylenetetrahydromethanopterin dehydrogenase is a novel type of hydrogenase that contains neither nickel nor iron-sulfur clusters. Evidence has been presented that the reaction mechanism catalyzed by the enzyme is very similar to that of the formation of carbocations and H2 from alkanes under superacidic conditions. We present here further results in support of this mechanism. It was found that the purified enzyme per se did not catalyze the conversion of para H2 to ortho H2, a reaction catalyzed by all other hydrogenases known to date. However, it catalyzed the conversion in the presence of the substrate N 5,N 10 methenyltetrahydromethanopterin (CH≡H4MPT+), indicating that for heterolytic cleavage of H2 the enzyme-CH≡H4MPT+ complex is required. In D2O, the formation of HD and D2 from H2 rather than a paraortho H2 conversion was observed, indicating that after heterolytic cleavage of H2 the dissociation of the proton from the enzyme-substrate complex is fast relative to the re-formation of free H2.  相似文献   
4.
5.
D-Amino acid oxidase (DAAO) is a well-known flavoenzyme that catalyzes the oxygen-dependent oxidative deamination of amino acid D-isomers with absolute stereospecificity, which results in α-keto acids, ammonia and hydrogen peroxide. Recently, the extraordinary functional plasticity of DAAO has become evident; in turn, boosting research on this flavoprotein. Protein engineering has allowed for a redesign of DAAO substrate specificity, oxygen affinity, cofactor binding, stability, and oligomeric state. We review recent developments in utilizing DAAO, including as a biocatalyst for resolving racemic amino acid mixtures, as a tool for biosensing, and as a new mechanism of herbicide resistance. Perspectives for future biotechnological applications of this oxidative biocatalyst are also outlined.  相似文献   
6.
D-amino acid oxidase (DAAO) is a flavoprotein that catalyzes stereospecifically the oxidative deamination of D-amino acids. The wild-type DAAO is mainly active on neutral D-amino acids, while basic D-amino acids are poor substrates and the acidic ones are virtually not oxidized. To present a comprehensive picture of how the active site residues can modulate the substrate specificity a number of mutants at position M213, Y223, Y238, R285, S335, and Q339 were prepared in the enzyme from the yeast Rhodotorula gracilis. All DAAO mutants have spectral properties similar to those of the wild-type enzyme and are catalytically active, thus excluding an essential role in catalysis; a lower activity on neutral and basic amino acids was observed. Interestingly, an increase in activity and (k(cat)/K(m))(app) ratio on D-aspartate was observed for all the mutants containing an additional charged residue in the active site. The active site of yeast DAAO appears to be a highly evolved scaffold built up through evolution to optimize the oxidative deamination of neutral D-amino acids without limiting its substrate specificity. It is noteworthy, that introduction of a sole, additional, positively charged residue in the active site is sufficient to optimize the reactivity on acidic D-amino acids, giving rise to kinetic properties similar to those of D-aspartate oxidase.  相似文献   
7.
An up-to-date checklist of the Italian Dermestidae is provided. The presence of 95 species in Italy is confirmed, while further 5 species (Dermestes (Dermestes) vorax Motschulsky, 1860, Thorictuspilosus Peyron, 1857, T. wasmanni Reitter, 1895, Attagenus (Attagenus) simonis Reitter, 1881 and Globicornis (G.) breviclavis (Reitter, 1878)) and 1 subspecies (A. (A.) tigrinus pulcher Faldermann, 1835) are excluded from the Italian fauna.Attagenus (Attagenus) calabricus Reitter, 1881 and A. (A.) lobatus Rosenhauer, 1856 are for the first time recorded from Abruzzi and Tuscany respectively; A. (A.) silvaticus Zhantiev, 1976 is recorded for the first time from mainland Italy (Apulia); Anthrenus (Anthrenus) angustefasciatus Ganglbauer, 1904 is new to northern Italy (Friuli-Venezia Giulia), central Italy (Tuscany), Apulia and Basilicata; A. (A.) munroi Hinton, 1943 is new to central Italy (Elba Island); A. (A.) delicatus Kiesenwetter, 1851 is for the first time recorded from Apulia; Globicornis (Globicornis) fasciata (Fairmaire & Brisout de Barneville, 1859) is new to southern Italy (Basilicata); G. (Hadrotoma) sulcata (C.N.F. Brisout de Barneville, 1866) is for the first time recorded from central Italy (Abruzzi), Campania and Sicily, whileTrogoderma inclusum LeConte, 1854 is new to Apulia.Seven species (Dermestes (Dermestes) peruvianus Laporte de Castelnau, 1840, D. (Dermestinus) carnivorus Fabricius, 1775, D. (Dermestinus) hankae Háva, 1999, D. (Dermestinus) intermedius intermedius Kalík, 1951, D. (Dermestinus) szekessyi Kalík, 1950, Anthrenus (Anthrenops) coloratus Reitter, 1881 and Trogodermaangustum (Solier, 1849)) recently recorded from Italy (without further details) are discussed.The lectotype and a paralectotype are designated forAttagenus (A.) calabricus Reitter, 1881 from Calabria.Attagenus pellio (Linnaeus, 1758) var. pilosissimus Roubal, 1932 is removed from synonymy with A. (A.) pellio and recognized as a valid species (stat. prom.); it is known from Lombardy, Apulia and Calabria.  相似文献   
8.
A recombinant lipase cloned from Pseudomonas fragi strain IFO 3458 (PFL) was found to retain significant activity at low temperature. In an attempt to elucidate the structural basis of this behaviour, a model of its three-dimensional structure was built by homology and compared with homologous mesophilic lipases, i.e. the Pseudomonas aeruginosa lipase (45% sequence identity) and Burkholderia cepacia lipase (38%). In this model, features common to all known lipases have been identified, such as the catalytic triad (S83, D238 and H260) and the oxyanion hole (L17, Q84). Structural modifications recurrent in cold-adaptation, i.e. a large amount of charged residues exposed at the protein surface, have been detected. Noteworthy is the lack of a disulphide bridge conserved in homologous Pseudomonas lipases that may contribute to increased conformational flexibility of the cold-active enzyme.  相似文献   
9.
Nonlinear (systems of) ordinary differential equations (ODEs) are common tools in the analysis of complex one‐dimensional dynamic systems. We propose a smoothing approach regularized by a quasilinearized ODE‐based penalty. Within the quasilinearized spline‐based framework, the estimation reduces to a conditionally linear problem for the optimization of the spline coefficients. Furthermore, standard ODE compliance parameter(s) selection criteria are applicable. We evaluate the performances of the proposed strategy through simulated and real data examples. Simulation studies suggest that the proposed procedure ensures more accurate estimates than standard nonlinear least squares approaches when the state (initial and/or boundary) conditions are not known.  相似文献   
10.
Molecular Biology Reports - Benign metastasizing leiomyoma (BML) is a rare disease characterized by extrauterine benign leiomyomatosis in patients with a previous or concomitant history of uterine...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号