首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2003年   2篇
  1996年   1篇
  1995年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The prevalence of hypovitaminosis D is high among obese subjects. Further, low 25‐hydroxyvitamin D (25(OH)D) concentration has been postulated to be a risk factor for type 2 diabetes, although its relation with insulin‐sensitivity is not well investigated. Thus, we aimed to investigate the relationship between 25(OH)D concentration and insulin‐sensitivity, using the glucose clamp technique. In total, 39 subjects with no known history of diabetes mellitus were recruited. The association of 25(OH)D concentration with insulin‐sensitivity was evaluated by hyperinsulinemic euglycemic clamp. Subjects with low 25(OH)D (<50 nmol/l) had higher BMI (P = 0.048), parathyroid hormone (PTH) (P = 0.040), total cholesterol (P = 0.012), low‐density lipoprotein (LDL) cholesterol (P = 0.044), triglycerides (P = 0.048), and lower insulin‐sensitivity as evaluated by clamp study (P = 0.047). There was significant correlation between 25(OH)D and BMI (r = ?0.58; P = 0.01), PTH (r = ?0.44; P < 0.01), insulin‐sensitivity (r = 0.43; P < 0.01), total (r = ?0.34; P = 0.030) and LDL (r = ?0.40; P = 0.023) (but not high‐density lipoprotein (HDL)) cholesterol, and triglycerides (r = 0.45; P = 0.01). Multivariate analysis using 25(OH)D concentration, BMI, insulin‐sensitivity, HDL cholesterol, LDL cholesterol, total cholesterol, and triglycerides, as the cofactors was performed. BMI was found to be the most powerful predictor of 25(OH)D concentration (r = ?0.52; P < 0.01), whereas insulin‐sensitivity was not significant. Our study suggested that there is no cause–effect relationship between vitamin D and insulin‐sensitivity. In obesity, both low 25(OH)D concentration and insulin‐resistance appear to be dependent on the increased body size.  相似文献   
2.
3.
Protein kinase C theta (PKC-theta) is the PKC isoform predominantly expressed in skeletal muscle, and it is supposed to mediate many signals necessary for muscle histogenesis and homeostasis, such as TGFbeta, nerve-dependent signals and insulin. To study the role of PKC-theta in these mechanisms we generated transgenic mice expressing a "kinase dead" mutant form of PKC-theta (PKC-thetaK/R), working as "dominant negative," specifically in skeletal muscle. These mice are viable and fertile, however, by the 6-7 months of age, they gain weight, mainly due to visceral fat deposition. Before the onset of obesity (4 months of age), they already show increased fasting and fed insulin levels and reduced insulin-sensitivity, as measured by ipITT, but normal glucose tolerance, as measured by ipGTT. After the 6-7 months of age, transgenic mice develop hyperinsulinemia in the fasting and fed state. The ipGTT revealed in the transgenic mice both hyperglycemia and hyperinsulinemia. At the molecular level, impaired activation of the IR/IRS/PI3K pathway and a significant decrease both in the levels and in insulin-stimulated activation of the serine/threonine kinase Akt were observed. Taken together these data demonstrate that over-expression of dominant negative PKC-theta in skeletal muscle causes obesity associated to insulin resistance, as demonstrated by defective receptor and post-receptorial activation of signaling cascade.  相似文献   
4.
NAFLD is the most common liver disease worldwide but it is the potential evolution to NASH and eventually to hepatocellular carcinoma (HCC), even in the absence of cirrhosis, that makes NAFLD of such clinical importance. Aim: we aimed to create a mouse model reproducing the pathological spectrum of NAFLD and to investigate the role of possible co-factors in promoting HCC. Methods: mice were treated with a choline-deficient L-amino-acid-defined-diet (CDAA) or its control (CSAA diet) and subjected to a low-dose i.p. injection of CCl4 or vehicle. Insulin resistance was measured by the euglycemic-hyperinsulinemic clamp method. Steatosis, fibrosis and HCC were evaluated by histological and molecular analysis. Results: CDAA-treated mice showed peripheral insulin resistance at 1 month. At 1–3 months, extensive steatosis and fibrosis were observed in CDAA and CDAA+CCl4 groups. At 6 months, equal increase in steatosis and fibrosis was observed between the two groups, together with the appearance of tumor. At 9 months of treatment, the 100% of CDAA+CCl4 treated mice revealed tumor versus 40% of CDAA mice. Insulin-like Growth Factor-2 (IGF-2) and Osteopontin (SPP-1) were increased in CDAA mice versus CSAA. Furthermore, Immunostaining for p-AKT, p-c-Myc and Glypican-3 revealed increased positivity in the tumors. Conclusions: the CDAA model promotes the development of HCC from NAFLD-NASH in the presence of insulin resistance but in the absence of cirrhosis. Since this condition is increasingly recognized in humans, our study provides a model that may help understanding mechanisms of carcinogenesis in NAFLD.  相似文献   
5.

Objective:

Clinical evidences reported subclinical alterations of thyroid function in obesity, although the relationship between thyroid status and obesity remains unclear. We cross‐sectionally investigated the influence of metabolic features on hypothalamic–pituitary–thyroid axis in obesity.

Design and Methods:

We enrolled 60 euthyroid subjects with no history of type 2 diabetes mellitus and assessed the relationship of thyroid function with insulin resistance, measured using euglycemic clamp, and abdominal fat volume, quantified by computed tomography scan (CT scan). Thyroid stimulating hormone (TSH) correlated with BMI (r = 0.46; P = 0.02), both visceral (r = 0.58; P = 0.02) and subcutaneous adipose tissue volumes (r = 0.43; P = 0.03) and insulin resistance (inverse relationship with insulin sensitivity–glucose uptake: r = ?0.40; P = 0.04).

Results:

After performing multivariate regression, visceral adipose tissue volume was found to be the most powerful predictor of TSH (β = 3.05; P = 0.01), whereas glucose uptake, high‐density lipoprotein (HDL) cholesterol, low‐density lipoprotein (LDL) cholesterol, subcutaneous adipose tissue volume, and triglycerides were not. To further confirm the hypothesis that high‐normal TSH values could be dependent on adipose tissue, and not on insulin resistance, we restricted our analyses to moderately obese subjects' BMI ranging 30‐35 kg/m2. This subgroup was then divided as insulin resistant and insulin sensitive according to the glucose uptake (≤ or >5 mg·kg?1·min?1, respectively). We did not find any statistical difference in TSH (insulin resistant: 1.62 ± 0.65 µU/ml vs. insulin sensitive: 1.46 ± 0.48; P = not significant) and BMI (insulin resistant: 32.2 ± 1.6 kg/m2 vs. insulin sensitive: 32.4 ± 1.4; P = not significant), thus confirming absence of correlation between thyroid function and insulin sensitivity per se.

Conclusion:

Our study suggests that the increase in visceral adipose tissue is the best predictor of TSH concentration in obesity, independently from the eventual concurrent presence of insulin resistance.
  相似文献   
6.
Proliferative modification of vascular smooth muscle cell (vSMC) and impaired bioavailability of nitric oxide (NO) have both been proposed among the mechanisms linking diabetes and atherosclerosis. However, diabetes induced modifications in phenotype and nitric oxide synthase(s) (NOS) expression and activity in vSMC have not been fully characterized. In this study, cell morphology, proliferative response to serum, alpha-SMactin levels, eNOS expression and activity, cGMP intracellular content, and superoxide anion release were measured in cultures of vSMC obtained from aorta medial layer of ten diabetic (90% pancreatectomy, DR) and ten control (sham surgery, CR) rats. Vascular SMC from DR showed a less evident "hill and valley" culture morphology, increased growth response to serum, greater saturation density, and lower levels of alpha-SMactin. In the same cells, as compared to CR cells, eNOS mRNA levels and NOS activity were increased, while intracellular cGMP level was lower and superoxide anion production was significantly greater. These data indicate that chronic hyperglycemia might induce, in the vascular wall, an increased number of vSMC proliferative clones which persist in culture and are associated with increased eNOS expression and activity. However, upregulation of eNOS and increased NO synthesis occur in the presence of a marked concomitant increase of O(2-) production. Since NO bioavailability, as reflected by cGMP levels, was not increased in DR cells, it is tempting to hypothesize that the proliferative phenotype observed in DR cells is associated with a redox imbalance responsible quenching and/or trapping of NO, with the consequent loss of its biological activity.  相似文献   
7.
Biochemical and structural changes occurring in the myocardium with aging are mainly resulting from the association of a general tissue atrophy with the hypertrophy of the remaining myocytes. Whilst hypertrophy seems to be a compensatory process to the loss of cardiomyocytes and to a mild systolic hypertensive condition that accompanies elderly people, atrophy should be the modification more closely related to aging per se. In support to the free radical theory of aging, several signs of oxidative damage have been shown in the aged heart, such as lipofuscin accumulation, decreased phospholipid unsaturation index, greater formation of both hydrogen peroxide and 8-hydroxy-2deoxyguanosine. As a compensatory reaction, the activities of the main oxygen-radical scavenger enzymes are stimulated in the mitochondria of aged rat heart. Endothelium-mediated vasoregulation is more susceptible to oxidative stress in aged with respect to young rats, suggesting that also the vasculature can be negatively influenced by the oxygen free radicals generated during aging. The possible primary role of oxygen free radicals in the development of myocardial atrophy is also discussed.  相似文献   
8.
Pathological conditions that cause oxidative stress can affect DNA integrity. The aim of this research was to study the protective effect of spermine against DNA damage induced by an oxygen-radical generating system. Deoxyguanosine and DNA were separately dissolved in phosphate buffer and incubated for 1 h at 40°C in the presence of 50 mMH2O2/10 mM ascorbic acid. Single nucleosides and their products of oxidation were then obtained by enzymatic digestion of DNA. The compounds were separated by micellar electrokinetic capillary chromatography (MECC) with SDS-modified mobile phase and detected at 254 nm. Two major products of DNA oxidation have been identified as derivatives of deoxyguanosine with electrophoretic properties different from 8-hydroxy-2-deoxyguanosine. When the oxidation of DNA was carried out in the presence of 0.1 mM spermine, the formation of the two by-products of deoxyguanosine was markedly reduced. On the contrary, spermine did not prevent the oxidation of deoxyguanosine alone, suggesting that the polyamine should be bound to the DNA strands to exert its antioxidative effect.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号