首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   3篇
  183篇
  2021年   4篇
  2020年   1篇
  2019年   4篇
  2018年   5篇
  2016年   3篇
  2015年   5篇
  2014年   11篇
  2013年   5篇
  2012年   12篇
  2011年   12篇
  2010年   11篇
  2009年   7篇
  2008年   6篇
  2007年   9篇
  2006年   3篇
  2005年   11篇
  2004年   11篇
  2003年   8篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1972年   2篇
  1971年   3篇
  1969年   1篇
  1964年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
1.
2.
Ring NTPases represent a large and diverse group of proteins that couple their nucleotide hydrolysis activity to a mechanical task involving force generation and some type of transport process in the cell. Because of their shape, these enzymes often operate as gates that separate distinct cellular compartments to control and regulate the passage of chemical species across them. In this manner, ions and small molecules are moved across membranes, biopolymer substrates are segregated between cells or moved into confined spaces, double-stranded nucleic acids are separated into single strands to provide access to the genetic information, and polypeptides are unfolded and processed for recycling. Here we review the recent advances in the characterization of these motors using single-molecule manipulation and detection approaches. We describe the various mechanisms by which ring motors convert chemical energy to mechanical force or torque and coordinate the activities of individual subunits that constitute the ring. We also examine how single-molecule studies have contributed to a better understanding of the structural elements involved in motor-substrate interaction, mechanochemical coupling, and intersubunit coordination. Finally, we discuss how these molecular motors tailor their operation—often through regulation by other cofactors—to suit their unique biological functions.  相似文献   
3.
4.
5.
The blood‐brain barrier (BBB) is essential for a functional neurovascular unit. Most studies focused on the cells forming the BBB, but very few studied the basement membrane (BM) of brain capillaries in ageing. We used transmission electron microscopy and electron tomography to investigate the BM of the BBB in ageing C57BL/6J mice. The thickness of the BM of the BBB from 24‐month‐old mice was double as compared with that of 6‐month‐old mice (107 nm vs 56 nm). The aged BBB showed lipid droplets gathering within the BM which further increased its thickness (up to 572 nm) and altered its structure. The lipids appeared to accumulate toward the glial side of the BM. Electron tomography showed that the lipid‐rich BM regions are located in small pockets formed by the end‐feet of astrocytes. These findings suggest an imbalance of the lipid metabolism and that may precede the structural alteration of the BM. These alterations may favour the accretion of abnormal proteins that lead to neurodegeneration in ageing. These findings warrant further investigation of the BM of brain capillaries and of adjoining cells as potential targets for future therapies.  相似文献   
6.
To investigate the effects of chronic exposure to ketone bodies on glucose-induced insulin secretion, we evaluated insulin release, intracellular Ca2+ and metabolism, and Ca2+ efficacy of the exocytotic system in rat pancreatic islets. Fifteen-hour exposure to 5 mM d-beta-hydroxybutyrate (HB) reduced high glucose-induced insulin secretion and augmented basal insulin secretion. Augmentation of basal release was derived from promoting the Ca2+-independent and ATP-independent component of insulin release, which was suppressed by the GDP analog. Chronic exposure to HB affected mostly the second phase of glucose-induced biphasic secretion. Dynamic experiments showed that insulin release and NAD(P)H fluorescence were lower, although the intracellular Ca2+ concentration ([Ca2+](i)) was not affected 10 min after exposure to high glucose. Additionally, [Ca2+](i) efficacy in exocytotic system at clamped concentrations of ATP was not affected. NADH content, ATP content, and ATP-to-ADP ratio in the HB-cultured islets in the presence of high glucose were lower, whereas glucose utilization and oxidation were not affected. Mitochondrial ATP production shows that the respiratory chain downstream of complex II is not affected by chronic exposure to HB, and that the decrease in ATP production is due to decreased NADH content in the mitochondrial matrix. Chronic exposure to HB suppresses glucose-induced insulin secretion by lowering the ATP level, at least partly by inhibiting ATP production by reducing the supply of NADH to the respiratory chain. Glucose-induced insulin release in the presence of aminooxyacetate was not reduced, which implies that chronic exposure to HB affects the malate/aspartate shuttle and thus reduces NADH supply to mitochondria.  相似文献   
7.
NMR measurements of the diffusional permeability of the human adult red blood cell (RBC) membrane to water (P d) and of the activation energy (E a,d) of the process furnished values of P d ~ 4 × 10?3 cm/s at 25 °C and ~6.1 × 10?3 cm/s at 37 °C, and E a,d ~ 26 kJ/mol. Comparative NMR measurements for other species showed: (1) monotremes (echidna and platypus), chicken, little penguin, and saltwater crocodile have the lowest P d values; (2) sheep, cow, and elephant have P d values lower than human P d values; (3) cat, horse, alpaca, and camel have P d values close to those of humans; (4) guinea pig, dog, dingo, agile wallaby, red-necked wallaby, Eastern grey kangaroo, and red kangaroo have P d values higher than those of humans; (5) mouse, rat, rabbit, and “small and medium size” marsupials have the highest values of P d (>8.0 × 10?3 cm/s at 25 °C and >10.0 × 10?3 cm/s at 37 °C). There are peculiarities of E a,d values for the RBCs from different species. The maximum inhibition of diffusional permeability of RBCs induced by incubation with p-chloromercuribenzene sulfonate varied between 0 % (for the chicken and little penguin) to ~50 % (for human, mouse, cat, sheep, horse, camel, and Indian elephant), and ~60–75 % (for rat, guinea pig, rabbit, dog, alpaca, and all marsupials). These results indicate that no water channel proteins (WCPs) or aquaporins are present in the membrane of RBCs from monotremes (echidna, platypus), chicken, little penguin and saltwater crocodile whereas WCPs from the membranes of RBCs from marsupials have peculiarities.  相似文献   
8.
The availability of data for reference values in cerebrospinal fluid for healthy humans is limited due to obvious practical and ethical issues. The variability of reported values for metabolites in human cerebrospinal fluid is quite large. Dogs present great similarities with humans, including in cases of central nervous system pathologies. The paper presents the first study on healthy dog cerebrospinal fluid metabolomic profile using 1H NMR spectroscopy. A number of 13 metabolites have been identified and quantified from cerebrospinal fluid collected from a group of 10 mix breed healthy dogs. The biological variability as resulting from the relative standard deviation of the physiological concentrations of the identified metabolites had a mean of 18.20% (range between 9.3% and 44.8%). The reported concentrations for metabolites may be used as normal reference values. The homogeneity of the obtained results and the low biologic variability show that the 1H NMR analysis of the dog’s cerebrospinal fluid is reliable in designing and interpreting clinical and therapeutic trials in dogs with central nervous system pathologies.  相似文献   
9.
In ovine cerebral arteries, adrenergic-mediated vasoconstrictor responses differ significantly with developmental age. We tested the hypothesis that, in part, these differences are a consequence of altered alpha(2)-adrenergic receptor (alpha(2)-AR) density and/or affinity. In fetal (approximately 140 days) and adult sheep, we measured alpha(2)-AR density and affinity with the antagonist [(3)H]idazoxan in main branch cerebral arteries and other vessels. We also quantified contractile responses in middle cerebral artery (MCA) to norepinephrine (NE) or phenylephrine in the presence of the alpha(2)-AR antagonists yohimbine and idazoxan and contractile responses to the alpha(2)-AR agonists clonidine and UK-14304. In fetal and adult cerebral artery homogenates, alpha(2)-AR density was 201 +/- 18 and 52 +/- 6 fmol/mg protein, respectively (P < 0.01); however, antagonist affinity values did not differ. In fetal, but not adult, MCA, 10(-7) M yohimbine significantly decreased the pD(2) for NE-induced tension in the presence of 3 x 10(-5) M cocaine, 10(-5) M deoxycorticosterone, and 10(-6) M tetrodotoxin. In fetal, but not adult, MCA, UK-14304 induced a significant decrease in pD(2) for the phenylephrine dose-response relation. In addition, stimulation-evoked fractional NE release was significantly greater in fetal than in adult cerebral arteries. In the presence of 10(-6) M idazoxan to block alpha(2)-AR-mediated inhibition of prejunctional NE release, the fractional NE release was significantly increased in both age groups. We conclude that in fetal and adult ovine cerebral arteries, alpha(2)-AR appear to be chiefly prejunctional. Nonetheless, the fetal cerebral arteries appear to have a significant component of postjunctional alpha(2)-AR.  相似文献   
10.
This invited review briefly outlines the importance of membrane water permeability, highlights the landmarks leading to the discovery of water channels. After a decade of systematic studies on water channels in human RBC Benga's group discovered in 1985 the presence and location of the water channel protein among the polypeptides migrating in the region of 35-60 kDa on the electrophoretogram of RBC membrane proteins. The work was extended and reviewed in several articles. In 1988, Agre and coworkers isolated a new protein from the RBC membrane, nick-named CHIP28 (channel-forming integral membrane protein of 28 kDa). However, in addition to the 28 kDa component, this protein had a 35-60 kDa glycosylated component, the one detected by the Benga's group. Only in 1992 Agre's group suggested that "it is likely that CHIP28 is a functional unit of membrane water channels". Half of the 2003 Nobel Prize in Chemistry was awarded to Peter Agre (Johns Hopkins University, Baltimore, USA) "for the discovery of water channels", actually the first water channel protein from the human red blood cell (RBC) membrane, known today as aquaporin 1 (AQP1). The seminal contributions from 1986 of the Benga's group were grossly overlooked by Peter Agre and by the Nobel Prize Committee. Thousands of science-related professionals from hundreds of academic and research units, as well as participants in several international scientific events, have signed as supporters of Benga; his priority is also mentioned in several comments on the 2003 Nobel Prize.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号